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Passive Three-Way All-Pass Crossover Networks*

ROBERT M. BULLOCK, lli

Miami University, Department of Mathematics and Statistics, Oxford, OH 45056, USA

Itis shown that three-way all-pass crossover networks cannot be successfully derived
from two-way all-pass networks if easily alignable passive ladder circuits are to be
used. New transfer function triples are introduced which do allow the ladder imple-
mentation of three-way all-pass networks. Detailed circuits and alignment formulas
are given to show how the new crossover networks may be passively realized.

0 INTRODUCTION

Two-way all-pass crossover systems [1] have become
an accepted standard in loudspeaker applications be-
cause of their flat magnitude response and the fact that
they can be passively realized. Unfortunately, as is
shown here, if two of these networks are cascaded, the
resulting three-way crossover is not all-pass. Even more,
there seems to be no way that the known two-way net-
works can be used to realize three-way all-pass cross-
overs. The aim of this paper is to present new transfer
functions which can be used for this purpose, and to
describe circuit topologies and alignment formulas that
may be used to implement them.

There are potentially many possible transfer function
sets and circuit topologies that could be used to realize
three-way all-pass crossovers. The objective here is to
find transfer functions which can be realized by eco-
nomical circuit topologies with efficient alignment al-
gorithms. Nevertheless, higher order networks require
lengthy calculations.

1 ALL-PASS NETWORKS

The term all-pass was first applied to crossover net-
works by Garde [1] and is defined in terms of network
transfer ratios. We will use voltage ratios, but the same
functions may be viewed as current ratios by using the
dual circuit realizations. If C(s), Ca(s), . . ., Cp(s)
are the voltage transfer ratios of the individual channels
of an m-way crossover network, that network is all-
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pass if the sum C\(s) + Cy(s) + - - - + C,(s) is an
all-pass transfer function in the filter theory sense. This
means

[Ci(s) + Cy(s) + + Cu(s)] = 1 (1)
forall s = jw, w = 0. In the usual audio terminology
the crossover has a flat summed-channel magnitude
response.

Garde [1] derived the sequence of two-way all-pass
transfer function pairs defined by

1 *1

Ci(s) = B,G5)’ Cu(s) = B(1/s) (2)

for n odd and

("
BX(s)

CLls) = Culs) = (3)

1
Bi(s)’
for n even, where By(s) is the kth-degree Butterworth
polynomial, m = n/2, and the crossover frequency is
1 rad/s. The first four Butterworth polynomials are listed
in Table 1. Networks realizing the odd-order pairs are
commonly called Butterworth crossovers and have long
been recommended for loudspeaker applications [2]
because they exhibit both flat power and flat magnitude
response [3]. Networks derived from the even-order
functions are also known as Linkwitz—Riley crossovers.
Linkwitz [4] advocated them as loudspeaker crossovers
because they help maintain a vertically symmetric
acoustic radiation pattern. They are also noted [5] for
minimizing acoustic response variations caused by the
geometric separation and phase difference between the
drivers in a two-way loudspeaker system.
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The popularity of the all-pass networks is clinched
by the fact that they can be realized by simple passive
circuitry, that is, resistance-terminated LC ladders. The
circuits and alignments for the Butterworth networks
can be found in any filter design handbook, and [6]
contains the same information for the Linkwitz—Riley
networks.

2 THREE-WAY NETWORKS

The low-pass, bandpass, and high-pass transfer func-
tions of a three-way crossover are denoted by Ci(s),
Cg(s), and Cy(s), respectively. If w) < w; are the radian
crossover frequencies, then it is assumed that the transfer
functions are frequency normalized to the geometric
mean wg of w; and w;:

wg = Vow; . (4)

The normalized radian crossover frequencies r and R
are then defined by

r w/wg (5)

R

(l)zl'r(s)g . (6}
It follows that
Rr = 1. (7)

In spite of Eq. (7), we will continue to use both r and
R in formulas so that the role of the two crossover
frequencies is clear at a glance.

The behavior of a three-way crossover depends
strongly on the separation between the two crossover
frequencies. Because of this we define the crossover
frequency spread as wy/w;, which with Eqs. (5)—(7)
becomes

spread = R . (8)

Note that R = 2 corresponds to a two-octave spread
and R = 3 to approximately three octaves.

We are interested in deriving transfer functions for
three-way all-pass crossovers which can be realized
with economical passive circuitry and efficient align-
ment procedures. The most direct approach would be
to somehow use the two-way all-pass functions. We
now show that this is not possible by any straightforward
technique.

Table 1. Butterworth polynomials through degree 4.

Bi(x) = 1 + x
Bix) = 1 + V2x + &

By(x) = 1 + 2x + 2% + x*
Bx) = 1 + V4 + 2V2x
+ 02+ VX + V4 +2V2x +
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3 CASCADED TWO-WAY NETWORKS

The simplest way to obtain a three-way network is
to cascade two-way networks. The cascade is formed
by using the output of the first-stage high-pass section
as the input to the second stage. Now if both stages
are two-way all-pass networks, is this an all-pass
crossover? If loading effects are ignored, the relevant
transfer functions are easily found starting with Eq.
(2) or Eq. (3). For example, with n = 2,

1

Ciis) = m (9
ad
Co(s) = B0BIIR) (1%
1
Culs) = B2075)BURIs) an
while if n = 3
1
Cile) = s (12)
B +1
Co(8) = B.(ris)B3(s/R) (13)
3 |
Cu(s) = B /s)Ba(RIs) (14)

These functions can be checked for all-pass behavior
by graphing the decibel magnitude

M(w) = 20 log|Ci(jo) + Cp(jw) + Cu(jw)|
versus the frequency w. If they sum to all-pass, then

the graph should be the 0-dB line. The results for the
second- and third-order functions are shown in Fig. 1.

1 R=3 LR
v
R=2
Frequency
(a)
g
R=3
e e ]iR
t
1
Frequency

(b)

Fig. 1. Magnitude response of three-way crossover formed
by cascading two-way all-pass crossovers. Each graph shows
responses for crossover frequency spreads of two (R = 2)
and three (R = 3) octaves. (a) Second order. (b) Third order.
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Each graph contains two responses, one using a two-
octave crossover frequency spread (R = 2) and the
other three octaves (R = 3). The frequency scale is
logarithmic and runs from two octaves below the low
crossover frequency to two octaves above the high one.
The vertical axis covers the range from —3 dB to 3
dB. When more than one polarity choice is possible,
the one giving the least response variation is used.

These figures clearly show that cascading does not
yield an all-pass crossover. The results for higher orders
are similar. Linkwitz—Riley (even-order all-pass)
crossovers have a fairly flat magnitude response for
large crossover frequency spreads, as the R = 3 graph
in Fig. 1(a) shows. This is somewhat deceptive if each
stage is realized by passive LC ladders, because loading
effects produce even larger variation. Thus cascading
gives at best only an approximation to all-pass response,
and other approaches must be considered if exact all-
pass networks are desired.

The reader will note that the above claims are not
true if the three-way network is obtained by cascading
two first-order networks. In this case the three-way
network is not only all-pass, but satisfies the much
stronger constant-voltage property introduced in Small
[7]. The shortcomings of first-order two-way networks
are widely known [8, sec. 1], and they apply equally
well when more than two channels are involved. Thus
our main effort here is directed toward finding ‘““higher
order™ crossovers.

4 PARALLEL FILTERS

Another approach is to use the two-way all-pass
functions to realize separately low-pass, bandpass, and
high-pass functions, and to realize the crossover with
these three filters in parallel. To achieve such a design
most efficiently, the low-pass two-way function is de-
normalized to r to obtain Cy(s) and the two-way high-
pass is denormalized to R to get Cy(s). For example,
based on the second-order functions,

1
CL(s) = Bisin) (15-1)
Culs) = el (15-3)
™ BRI

and for the third-order functions,
CuE) = = (16-1)
L Bi(s/r)

B 1

Culs) = BRI (16-3)

There are two simple ways to get a bandpass function.
One is to use the low-pass to bandpass frequency trans-
formation

s = (s + wf)/(Bs)
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on the two-way low-pass function, where wp is the
desired center frequency and B the bandwidth of the
resulting bandpass function. We choose wg = wy = 1
and B = R — r as the normalized values for these
constants. For the second- and third-order networks
this gives

|

Cs() = B + 1)iBs)] (15-2T)
and
Cals) = =1 (16-2T)

Bi[(s> + 1)/(Bs)]

respectively. The advantage of this technique is that
the alignment for the bandpass circuit is completely
determined by the low-pass one, that is, it is compu-
tationally efficient. However, as Fig. 2 shows, the re-
sulting three-way networks are far from all-pass. The
graphing specifications here are the same as before.
The variation is similar if the higher order functions
are used, and changing values of wp and B does not
significantly improve it.

The second way to get the bandpass section is to
cascade low- and high-pass filters. This method is less
efficient computationally in passive realizations because
the bandpass must be separately aligned in order to
account for loading effects. The second- and third-
order bandpass functions are then

-1

Cg(s) = m (15-2C)
and
— 7il -
Cs() = B inBGIR) kh6r2C)

respectively. Fig. 3 shows that the use of this bandpass
function still does not result in all-pass response. Similar
variations occur using the higher order two-way net-
works.

5 IMPLICATIONS

Other practical approaches to coaxing all-pass be-
havior from two-way-based networks come to nothing.
For example, independently varying the gains of the
three channels does not flatten the response, it merely
changes the ripple pattern. From these considerations
it may be concluded that three-way all-pass crossovers
are to be most efficiently obtained by deriving new
transfer functions with the all-pass condition (1) as the
governing constraint.

The objective then is to derive triples of functions
satisfying Eq. (1), which are realizable by economical
passive circuitry and efficient alignment algorithms.
The easiest way to attain the latter conditions is to
assume that the complete crossover can be derived from
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a single low-pass filter function by the use of cascading
and frequency transformations. To realize and align
the low-pass function efficiently, it is desirable to as-
sume that it is an all-pole function. This will also max-
imize the stopband attenuation of the resulting cross-
over.

6 TRANSFER FUNCTION FORM

We will assume

Culs) = (17)

1
P(s/r)
where

P(s) = s" + a;s"' + + a,s + 1 (18)
is a Hurwitz polynomial. Then the low-pass section
can be realized by an elementary ladder. The full transfer
function complement can then be obtained in various
ways, but we will concentrate on the three methods
used in Sections 3 and 4.

1) Cascade derived:

1

CLs) = Berm (19-L)

Cals) = 5o — (19-B)

BY) = p(r/s)P(s/R) -
ey P 1 —tEa -

Cu(s) = BIP®RIs) (19-H)

2) Transformation bandpass and high-pass:

o) = oo (20-L)

LS = psin -

Gl = g (20-B)

BT PUsE + wd)/Bs]

Culs) ‘ (20-H)

= P(RIs)

with wg = wo(= 1)and B = R — r.
3) Cascaded bandpass, transformation high-pass:

1

Cuis) = P(sir) (21-L)

Cs(s) = B/sPGIR) (21-B)
— l___ -

Bl = s - (21-H)

Option 2) has an apparent efficiency advantage be-
cause both the bandpass and the high-pass alignments
are automatically determined by the low-pass alignment.
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Fig. 2. Magnitude response of three-way crossover formed
by parallel connection of two-way all-pass crossover filters.
Here the bandpass is obtained by frequency transformation.
Each graph shows responses for crossover frequency spreads
of two (R = 2) and three (R = 3) octaves. (a) Second order.
(b) Third order.
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Fig. 3. Magnitude response of three-way crossover formed
by parallel connection of two-way all-pass crossover filters.
Here the bandpass is obtained by cascading. Each graph shows
responses for crossover frequency spreads of two (R = 2)
and three (R = 3) octaves. (a) Second order. (b) Third order.
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Option 1) has the advantage of a better stopband at-
tenuation in the high-pass section.

To derive an all-pass transfer function triple based
on these options we must find values for a;, az, . . . ,
a,-, so that the equation

|CL(jw) + Cg(jw) + Cu(jw)| = 1 (22)
is satisfied for all w =. If C (jw) + Cp(jw) + Cy(jw)
is expressed as a single rational function and its squared
magnitude is taken, Eq. (22) reduces to the statement
that two polynomials in » must be identical. This gives
rise to 4n — 1 equations in ay, a3, . . . , dy-1, 7, R,
which must be solved for the a; with r and R as fixed
parameters. Because of symmetry, options 2) and 3)
yield only 2n independent equations, but even so the
number of equations is still too great to expect a solution.

The number of equations arising from options 1) and
3) can be substantially reduced by replacing P in the
bandpass functions with

Po(s) = s" + a_ 15" + - 4+ ais + 1.

(23)

Note that Py is obtained from P by reversing the coef-
ficient order. This additional functional symmetry re-
duces the number of equations to 2n — 1 for option 1)
and to n for 3). Thus if one more variable can be in-
troduced in the modified option 3), that form will give
a system of n equations in n unknowns and good pros-
pects for a solution.

A successful nth variable turns out to be a bandpass
gain factor h, that is, we assume the functional forms

1

Ci(s) = PG (24)
BYLE = e (25)
BT Po(ris)Po(s/R)

G = (26)
S = PRis)

The problem now is to find ay, a3, . . . , a,—1, h 50O

that Eqs. (24)-(26) satisfy Eq. (22), and so that P(s)
is a Hurwitz polynomial. The parameter 4 can be either
positive or negative to indicate the polarity to be ob-
served in the bandpass section. A crossover with these
transfer functions can be assigned an order, namely n,
just as for the standard two-way crossovers. Further,
the order has the same significance in that the stopband
asymptotic attenuation rate will be 6n dB per octave
in all channels for the nth-order network.

7 ALTERNATIVE FORMS

Before proceeding, it should be emphasized that the
transfer function forms chosen here are not the only
ones that can be successful. As a matter of fact, if the
cascade-derived option 1) is modified to

PAPERS

|
Ci(s) = P(s/r)

o h
Ca(s) = Py(ris)Q(s/R)
Cils) = Frmp
) = B /5)0o(RIs)

where Q is a second Hurwitz polynomial of degree n,
then usable solutions exist, at least for n = 2. However,
the solution is more difficult to find for a given n because
2n — 1 rather than n equations must be solved.

8 THREE-WAY ALL-PASS FUNCTIONS

The system of equations resulting from Eqs. (22)-
(26) is nonlinear and contains the additional variable
R. Thus the solutions will depend on the crossover
frequency spread. In other words, we should not expect
to be able to use the same polynomial P(s) for all three-
way all-pass crossovers of a given order. The form of
the system of equations which must be solved depends
on the order n, and it does not appear possible to solve
it for arbitrary n. We will describe solutions through
order 4, which should cover most conceivable audio
applications.

8.1 First Order

This case is included simply for completeness. Be-
cause

P(s) = s + 1 27
is the only polynomial of degree 1 and the form of Eq.
(23), h is the only free parameter in the system of
equations. Substituting Eqs. (23)-(25) into Eq. (22)
gives

|2+ 2r + hBR)s + 1| = |s* + R + r)s + 1] .

The polynomials inside the absolute values are the same
if

2r + kR = R + r,
which yields

h=1-r. (28)
With this choice of h and P, the crossover defined by
Egs. (24)-(26) has both constant amplitude and zero
phase, that is, it defines a three-channel constant-voltage
Crossover.

As mentioned in Section 3, a first-order three-way
constant-voltage crossover can also be realized by cas-
cading two-way sections. It is preferable to the one
described here for two reasons. First it can be passively
implemented with less computation, because a gain
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factor is unnecessary and no bandpass filter is required.
There are no loading effects between the two stages
because a first-order two-way network is a constant-
resistance network. This assures that its combined power
response is flat, which is the second reason it is to be
preferred.

8.2 Second Order

The required polynomial form is
P(s) = s*+as + 1. (29)
In this case P and P are identical and @ and h are the
unknowns. Substitution of Egs. (23)—(25) into Eq. (22)
yields
Is* + ars® + @r* + BRY)s? + ars + 1|
= |s* + aR + s’ + R + & + r)s’
+ aR + rs + 1| . (30)
This equality cannot be satisfied by making the two s
polynomials equal, so the crossover cannot have the
constant-voltage property. To obtain equations in a
and h, Eq. (30) must be converted to a magnitude-
squared expression using s = wj. This gives
[1 — 2F + hRHw? + 0P + d*rl(e - *)?
=1 - R + a + P’ + o'
+ @R + Niw — o) (31)
which must hold for all @ = 0. Hence, at ® = 1,
2 + 2r* + R*» = 2 + R* + & + )*.
This implies either

2+ 2rP + lR® =2+ R +ad +r (32

or

2 + 22 + hR? -2 - R — a2 - .
(33)

Next the w? coefficients of the polynomials in Eq. (31)
must be equal, so

a’r* — 2(2r* + hR?)
=aR + ) - 2R + a + ). (34

Now condition (32) is incompatible with this as it leads
to R = 0. Thus Eq. (33) is the only choice leading to
a solution. Solving Egs. (33) and (34) simultaneously
gives
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2R - 1)
T RVRE - 2 (39)
and
h= -1+ (@ - 4 + 3r'] . (36)

From Eq. (35) we see that there is a second-order
all-pass crossover for all values of R > V2. This means
that the crossover spread must be more than an octave.
This is not to say that an all-pass crossover does not
existforR = \/5, but if one does, its transfer functions
do not have the form of Eqs. (23)-(26).

It is interesting to note that a — 2 as R — . This
can be interpreted as saying that the transfer functions
found here approach the known two-way all-pass
transfer functions. In this sense the new three-channel
crossover is a natural analog of the two-way all-pass
crossover.

Formula (35) implies that @ > 2 for all allowable R.
This fact and Eq. (36) show that the multiplier 4 is
always negative, that is, the bandpass polarity must
be reversed. This is consistent with the fact that the
two-way second-order all-pass network uses opposite
polarities in adjacent channels.

8.3 Third Order

For third-order crossovers the polynomial P has the
form

P(is) = s + as*> + bs + 1. 37N

This is the first instance in which P and Py may be
distinct. This fact complicates the derivation, so the
details are relegated to the Appendix, where it is shown
that there are two possible solutions.

The values of a, b, and A for the first can be obtained
by finding b as a positive root of

B + (R* + 4rH)b® — 8b* + 4R%
- 8R* + r) =0 (38)

and then computing a and h from

a = b2 (39)
and
h =1+ (& = 2b)r* + 2ar* — r*. (40)

Table 2 lists solutions for R values from 1.4 to 5 in
0.1 steps for low R and 0.2 steps for larger ones.

The second solution results from finding b as a positive
root of

b — (R* + 4r)b° — 8b* + (4R’ + 8%

+ 8R* + ¥ =0 41
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and calculating a and h from

a = b2 (42)
and
ho= —1— (a® = 2b)* + 2ar* — 315 . (43)

Solutions are listed in Table 3 for R between 1.7 and
5 in the same format as Table 2.

Solutions of the first system actually exist for any R
> 1, but were not tabulated for the smaller R values
because it is expected that they would rarely be used
in practice. Solutions of the second system do not exist
for R < 1.7. (This value is approximate; the exact
value is between 1.6 and 1.7.) It is clear from the
tabulated data that the bandpass polarity is observed
in the first solution and reversed in the second. This is
consistent with the situation for two-way all-pass
crossovers, that is, all-pass response can be obtained
for third-order crossovers whether the polarity of ad-
jacent channels is the same or opposite. For either
crossover it is true that a— 2 and b— 2 as R — x.
Thus these transfer functions are natural three-channel
extensions of the two-way all-pass functions.

8.4 Fourth Order

The fourth-order transfer functions require a fourth-
degree polynomial of the form

P(s) = s* + as® + bs® + ¢cs + 1. (44)

Table 2. Parameters for positive-polarity bandpass third-
order three-way all-pass crossover.

R a b h

1.4 1.4794 1.7201 0.9988
1.5 1.5261 1.7470 0.9973
1.6 1.5683 1.7711 0.9962
1.7 1.6064 1.7924 0.9956
1.8 1.6405 1.8113 0.9956
1.9 1.6710 1.8381 0.9958
2.0 1.6983 1.8430 0.9963
2.1 1.7228 1.8562 0.9968
2.2 1.7446 1.8679 0.9971
2.3 1.7642 1.8784 0.9975
2.4 1.7817 1.8877 0.9979
2.5 1.7975 1.8961 0.9982
2.6 1.8118 1.9036 0.9985
2.9 1.8246 1.9103 0.9987
2.8 1.8363 1.9164 0.9989
2.9 1,8468 1.9219 0.9990
3.0 1.8564 1.9269 0.9992
3.2 1.8732 1.9355 0.9994
3.4 1.8872 1.9428 0.9996
3.6 1.8991 1.9489 0.9997
3.8 1.9092 1.9541 0.9998
4.0 1.9179 1.9585 0.9998
4.2 1.9254 1.9623 0.9999
4.4 1.9319 1.9657 0.9999
4.6 1.9370 1.9686 0.9999
4.8 1.9427 1.9711 0.9999
5.0 1.9471 1.9733 0.9999
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Again, the derivation is lengthy and so is carried out
in the Appendix. The result is that there are two possible
solutions. The relevant values of a, b, ¢, and & for the
first can be found from the equations

2 =20 =0 (45
(b — 2ac + 2)R* — 2R%h — 2 = 0  (46)
(a* — 2b)R" + (@* — b)(b* — 2ac
+ 2)R® + 2bR* — 2ac = 0 (47)
(b* — 2ac)R® — 2(a* — 2b)R*
— 2(b* — 2ac)R* — 4b = 0 . (48)

Solutions of this system exist for any R > 1.2 (ap-
proximately) and are tabulated in Table 4 for R between
1.4 and 5. As can be seen from the table, a — 2V2,
b— 4, ¢c— 2\/5, and h — 1 as R — =, which means
that this crossover is a natural extension of the fourth-
order two-way all-pass crossover.

A second solution can be found by solving Egs. (45)-
(47) and

(b* — 2ac + 4)R* + 2(a* — 2b)RS

+ 2(b* — 2ac + 4)R* — 4bR* + 4 = 0 .
(49)

On an intuitive basis we should not expect this second
solution, because there is no corresponding two-way
analog. If this solution is examined as R — o, it is
found that a, b, ¢ — 2. In other words, the analogous
two-way transfer functions would have the denominator
"+ 283 + 282+ 25+ 1) =(s + P (s*+ 1),
which does not yield a passively realizable transfer
function [9, p. 343]. This means that the three-way
functions can be expected to have a high-Q second-
order section, which complicates the problem of circuit
design. Further, there is an approximately 180° phase
difference between adjacent channels, a feature that
does not bode well for its use as a loudspeaker crossover.
For these reasons it was decided not to tabulate its
parameters. The discovery of this unexpected all-pass
crossover contrasts sharply with the situation for two-
channel crossovers, where the passive all-pass constraint
yields a unique crossover for each even order [10].

8.5 Higher Order All-Pass Crossovers

The techniques implicit in the above derivations can
be used to find transfer functions of higher order all-
pass crossovers, but the relevant equations appear to
increase dramatically in their complexity with the order.
The easier procedure for higher orders is to use cascaded
two-way all-pass networks with a crossover frequency
spread of at least three octaves. This does not yield
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exact all-pass response, but is within a fraction of a
decibel and eliminates the need for very lengthy cal-
culations. Even so, the even-order cases will involve
additional calculations because alignments must be ad-
justed to account for loading effects.

Table 3. Parameters for negative-polarity bandpass third-
order three-way all-pass crossovers.

R a b h

1.7 2.7708 2.3541 —1.4882
1.8 2.5580 2.2618 —1.2242
1.9 2.4576 2.2170 —-1.1314
2.0 2.3919 2.1872 —1.0846
2.1 2.3435 2.1649 =1.0575
2.2 2.3055 2.1473 —1.0405
2:3 2.2747 2.1329 —1.0294
2.4 2.2489 2.1208 -1.0218
25 2.2270 2.1105 —-1.0650
2.6 2.2082 2.1015 —-1.0126
2.7 2.1918 2.0937 —1.0098
2.8 2.1773 2.0868 -1.0077
2.9 2.1646 2.0807 —1.0061
3.0 2.1532 2.0752 —1.0049
3.2 2.1338 2.0658 —1.0033
3.4 2.1180 2.0582 -1.0022
3.6 2.1049 2.0518 —1.0016
3.8 2.0939 2.0464 —1.0011
4.0 2.0846 2.0418 -1.0008
4.2 2.0766 2.0379 ~-1.0006
4.4 2.0697 2.0345 —1.0004
4.6 2.0640 2.0310 —1.0003
4.8 2.0584 2.0290 —1.0003
5.0 2.0538 2.0267 —1.0002

Table 4. Parameters for fourth-order three-way all-pass

CrOsSSOVers.
R a b c h
1.4 ° 2.4304 3.7515 2.7392 1.3120
1.5 2.5051 3.7544 2.7402 1.1444
1.6 2.5651 3.7816 2.7501 1.0726
1.7 2.6130 3.8126 2.7614 1.0382
1.8 2.6512 3.8415 2.7718 1.0247
1.9 2.6819 3.8666 2,7809 1.0114
2.0 2.7066 3.8879 2.7885 1.0064
2.1 2.7766 3.9056 2,7948 1.0037
2.2 2.7428 3.9202 2.8001 1.0021
2.3 2.7561 3.9323 2.8044 1.0012
2.4 2.7669 3.9423 2.8080 1.0007
2.5 2.7758 3.9506 2.8109 1.0004
2.6 2.7832 3.9575 2.8134 1.0002
Dk 2.7894 3.9633 2.8154 1.0001
2.8 2.7946 3.9681 2.8171 1.0001
2.9 2.7989 3.9722 2.8186 1.0000
3.0 2.8026 3.9757 2.8198 1.0000
3.2 2.8084 3.9811 2.8217 1.0000
3.4 2.8127 3.9852 2.8232 1.0000
3.6 2.8159 3.9882 2.8242 1.0000
3.8 2.8183 3.9905 2.8251 1.0000
4.0 2.8202 3.9922 2.8257 1.0000
4.2 2.8216 3.9936 2.8262 1.0000
4.4 2.8228 3.9947 2.8263 1.0000
4.6 2.8237 3.9955 2,8269 1.0000
4.8 2.8244 3.9962 2.8271 1.0000
5.0 2.8250 3.9968 2.8273 1

.0000
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9 POWER RESPONSE

A crossover has the constant-power property if its
channel transfer functions C(s), . . . . Cy(s) satisfy
ICiGjo)? + [Caj) + - -+ + [Ca(jo)* = 1
(50)

for all w = 0. This property is desirable in loudspeaker
crossovers because such a network will not add dis-
tortion to the overall acoustic power response. The
odd-order two-way all-pass networks have this property,
but none of the new three-way networks does. Fig. 4
shows the power responses of the new second-, third-,
and fourth-order networks, respectively. The same graph

3

/4 | hR

S

Power (aB)

Frequeney
(a)

r/h | bR

Power (dB)
o

-3 Frequency
(b)

r/h | LR

Power (dB)
(=]

Frequency
(c)

Fig. 4. Combined power response of the new three-way all-
pass crossover networks. Each graph shows responses for
crossover frequency spreads of two (R = 2) and three (R =
3Jdoctaves. (a) Second order. (b) Third order. (¢) Fourth
order.
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specifications are used as in earlier figures.

It appears that the only hope of realizing three-way
networks with both the constant-power and all-pass
properties is to abandon ladder circuits. Thus it is likely
that the most practical approach would be to permit
active realizations.

10 CROSSOVER FREQUENCY SPREAD

As already noted, the three-way all-pass transfer
functions (24)-(26) depend on the crossover frequency
spread. In general for small values of R (R < 3), the
defining polynomial P(s) is quite different from the
corresponding two-way all-pass polynomial. This is
why the attempts to obtain all-pass response from the
known two-way functions failed. However, for large
crossover frequency spreads (R = 3), P(s) is quite close
to its two-way counterpart. In practice this means that
the two-way polynomial could be used in place of P(s)
without wide response variations resulting. In particular,
it appears that the ripple caused by such an approxi-
mation when R = 3 is smaller than 1 dB. Because
polynomial coefficients do not have to be calculated,
the approximation is computationally more efficient.
However, P must be found for small spreads, and the
procedure is no more difficult with large ones, so we
do not make use of this approximation.

11 PASSIVE REALIZATION

The various crossover transfer functions introduced
above can be realized passively using standard circuit
topologies, but there are several complications. First,
many of the required alignments are new and so are
not tabulated in any handbook. Second, realization of
the cascaded bandpass filter is not explicitly discussed
in circuit design references. Third, provisions for re-
alizing the gain factor h must be incorporated. Therefore
a self-contained treatment of the passive realization of
the new networks is included here. This verifies the
claim that the new crossovers are indeed passively re-
alizable.

The resistance-terminated LC ladder circuit is used
for passive realization. This topology is traditional in
crossover design, and alignment formulas can be
straightforwardly derived; but two facts regarding-its
use must be kept in mind. First, it should ideally be
driven by a zero resistance source and second, its ter-
mination should be resistive. It will deviate from its
theoretical response in proportion to variations from
these states. In loudspeaker applications, the first re-
quirement can be satisfied practically by the use of a
high-damping-factor amplifier.

The second requirement is more difficult to satisfy,
because a typicai loudspeaker does not present a resistive
impedance and cannot always be equalized to do so.
The practical goal should be to equalize to the flattest
impedance practicable over the widest possible fre-
quency band containing the crossover frequencies.
Theoretically such equalization can be achieved exactly
for any loudspeaker fitting the Thiele-Small models
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by paralleling the driver terminals with an LCR circuit
whose impedance is the dual of the loudspeaker’s with
respect to the driver’s dc resistance. However, the re-
sults are practically restricted by the accuracy of the
model, as well as by nonideal component behavior and
component size limitations in the equalizing LCR net-
work.

Crossovers can be formed by either parallel or series
connection of filters. We regard the transfer functions
as voltage ratios and hence use parallel connections.
The series connection can be obtained by regarding
the transfer functions as current ratios and using the
duals of the circuits presented. All the circuits described
here have a natural positive polarity. If the crossover
of interest calls for a negative bandpass polarity, reverse
the natural polarity of its termination.

11.1 Low-Pass Circuit

The low-pass crossover section is realized using the
circuits and alignment formulas in Fig. 5 for the first
through the fourth order, respectively. These circuits,
as well as all subsequent ones, have component values
which are frequency normalized to 1 rad/s and imped-
ance normalized to a 1-() terminating resistance. The
resulting filter realizes the Cy(s) in Eq. (24). The circuits
may be denormalized to a low-section load resistance
of Ry and a lower radian crossover frequency w; by
multiplying each inductor value by Ry/w; and dividing
each capacitor value by Ryw;.

11.2 High-Pass Circuit

The frequency- and impedance-normalized high-pass
circuit and alignment formulas are obtained by applying
the low-pass to high-pass frequency transformation s
— /s to the circuits in the last section. The resulting
circuit is found by replacing each inductor by a capacitor
and each capacitor by an inductor. The normalized
alignment formulas are the reciprocals of the low-pass
formulas with inductor and capacitor names inter-
changed to fit the circuit. Fig. 6 gives the results for
orders 1 through 4, respectively. This high-pass filter
may then be denormalized to the high section termi-
nating resistance Ry and the high radian crossover fre-
quency ws, just as was done in the low-pass case, that
is, by multiplying each inductor value by Ry/w; and
dividing each capacitor value by Rrw;.

11.3 Bandpass Circuit

Figs. 7—-10 show the bandpass circuit topologies and
their alignment formulas for orders 1 through 4, re-
spectively. These circuits are denormalized by multi-
plying each inductor value by Rp/wg, dividing each
capacitor value by Rgwy, and multiplying R,, by R,
where Ry is the desired terminating resistance and wg
is given by Eq. (4).

The correct bandpass gain factor A is set in each of
the above circuits by the value of the resistor R,,. An
alternative approach is worth considering when the
crossover is part of a loudspeaker system. Find the

285



PAPERS

bandpass with R,; = 0 in both the design formulas and
the circuit. It then has an excess gain E in the amount

E = 20log (K/H) dB

where H is defined in Table 5 for each order, and X is
found among the design formulas for the circuit used.

©

- -

%
Lon Lin
L L] _I_ o
Vi 4 TCn ] 4 VO
L =1/a E=b-1/a
In
C = a/E
LG = E
(c)
LZH Lln

(d)

Fig. 5. Low-pass filter circuits and alignment formulas for
the new crossovers. (a) First order. (b) Second order, param-
eter a from Eq. (35). (c) Third order, parameters a, b from
Table 2 or 3. (d) Fourth order, parameters a, b, ¢ from Table
4.
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If the midrange driver nominal sensitivity is Sy, then
the value of h may be automatically accounted for by
using Sy + E as its effective value in the sensitivity
matching phase of design. E is always positive, so this
alternative allows the possibility of using a midrange
driver of lower nominal sensitivity rather than that of
the woofer and tweeter.

cn
_._..__.!’
vi 4 1 + !.'0

C =1
n
(a)

C

n

1]
~
)

Cn = }/a
L =a
(b)
c2 cln
o
VI 4 %Ln léﬁ‘ Uo
C!n = a E=b-1/a
L =E/a
cZn = 1/E
(n)
c2n ﬁl
o K 'ty o
Vi + %LG %Lin 1% + Vc
Llnh 2 E=b-c/fa
clﬂ=E’a F=c—afE
LG = F/E
cZn = 1/F

(d)
Fig. 6. High-pass filter circuits and alignment formulas for
the new crossovers. (a) First order. (b) Second order. (c)
Third order. (d) Fourth order. Relevant a, b, ¢ parameters
chosen as in Fig. 5.
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12 DESIGN PROCEDURE

The step-by-step design procedure for the new net-
works is as follows. Choose a crossover order (1, 2,
3, 4) and crossover frequencies f; < f;. From R =
V/f/fy and r = 1/R determine the polynomial coeffi-
cients and gain factor using Eq. (28) for order 1, Egs.
(35) and (36) for order 2, Table 2 or 3 for order 3, or
Table 4 for order 4. Calculate the normalized low-pass
and high-pass component values from Figs. 5 and 6,
and denormalize them to the desired load resistances
and crossover frequencies as described in Sections 11.1
and 11.2. Calculate the necessary bandpass parameters

LI"I. t:I'I Ran
T}
Vl t 1 +v
[+ ]
K=A
¢, = KR R, = K-

L - I}(KRO) Ry=1+R_

Fig. 7. First-order bandpass circuit and alignment formulas
for the new crossovers. Calculate A, H parameters from first-
order formulas in Table 5.

l:Zn LI n Ran

o 1 Tk 2!

13
Vi + él.zn == cln 1 'I“VG

¢ = I/(Aﬂo) L,, = ERy K=B-]

0

Lln = AROJ’R Ran = K/H-1 E = A-A/K

CZn = K.-’(ERO) Roﬂ Ran-!-]

Fig. 8. Second-order bandpass circuits and alignment for-
mulas for the new crossovers. Calculate A, B, H parameters
from second-order formulas in Table 5.
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from Table 5 and find the normalized component values
from the appropriate one of Figs. 7-10. Finally, de-
normalize to the radian center frequency wg = 27Vf f>
and the desired load resistance as described in Section
11.3.

13 CONCLUSION

Two-way all-pass crossovers are widely recom-
mended because they offer a flat combined voltage
magnitude response in a network that can be realized
passively by simple ladder circuits. In addition a de-
sirable phase response can be obtained with the even
orders, and a flat combined power response with the
odd orders. We have shown that there is no elementary
way to implement three-way all-pass crossovers from
these known two-way networks. In particular, neither
cascading the two-way networks nor paralleling filters
derived from them will do the job, even if the inevitable
loading effects are ignored.

Because of this, we have derived new transfer function
triples which do have the all-pass property. There are
several forms which these functions might reasonably
have taken. We picked the one that apparently requires
the least amount of computation to obtain the functions
and to align the relevant circuits. The form is that of
a parallel filter crossover with a bandpass section ob-
tained by cascading low- and high-pass filters derived
directly from the low-pass section of the crossover.
Also, the high-pass section is derived by a low-pass
to high-pass frequency transformation from the low-
pass section. The fact that the crucial low-pass section
is an all-pole filter assures that the complete filter can
be realized economically by simple resistance-termi-
nated LC ladders.

These three-way networks have neither flat combined
power in the odd orders nor the desirable phase behavior
in the even orders, as do their two-way counterparts.
Even so, the crucial all-pass response is preserved, and
the aforementioned properties are satisfied in an ap-
proximate sense.

Lgn LG W20 Fln Ran

Po— ) I {—— VA~

1 s g ’

v, ' Csn ?Lln ‘ é Yo

o < J
), = ARy can = F/(HRJ E=B - C/A
Lin = ERU)'R I.3n = HRO/K F=A-AJE
c, = KI(EROJ Rop=KH-~-1 K=cC-~A(B-1)/E
L, =R /F  R=1+ R, M= B-1-K/Fy~EF/K

Fig. 9. Third-order bandpass circuits and alignment formulas for the new crossovers. Calculate A, B, C, H parameters from

third-order formulas in Table 5.
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c{m £ n L2n Lln Ran
°"'"‘"1»T‘]: ’.”Tmz‘"'—“—"\/\/\*”"
V. + = L L - C = C ] 0 v
i La < T3n 2n In o
7 RN
C,, = I/(F\RG) Chn = K/fROT} G = C-AF/E
’“in = ARU/'E le = TRD.’Q 4 = C-A(B-1)/E
th = E/(GRO) Ran = K/H-) K= F-JE/G
L, = GROIK Ry= TR L = A-A/E
l:3n = Q/(PRO) E = B-C/A M = J-GH/X
L3“ = PR F = b-C/A P=L-G/K
M= B8-1-FL/G Q= H-}/P

Fig. 10. Fourth-order bandpass circuits and alignments formulas for the new crossovers. Calculate A, B, C, D, H parameters

from fourth-order formulas in Table 5.

Table 5. Bandpass circuit design parameters.

A R + r
H = |h|R
with parameter h from Eq. (28)

First order

Second order A=alR + 1)
B =R +a + 7
H = |h|R?

with parameters a, h from Eqgs. (35) and

(36), respectively
Third order A = bR + ar
B = aR’ + ab + br’
C =R + dR + br + 71
H = |hR}

with parameters a, b, h from Table 2 or 3.

A = ¢R + ar

bR + ac + br

aR’® + abR + ber + or
=R+ a'R* + b + i+
= |hR*

with parameters a, b, ¢, h from Table 4.

Fm_xrth order

Tt n®

These new three-way crossovers should be of sig-
nificant value to the audio equipment designer in general
and to the loudspeaker specialist in particular. We realize
that the most effective loudspeaker crossover is arrived
at by successive approximations of a specified overall
acoustic output, but at the very least these new networks
allow the approximation process to be started with a
better initial configuration. Also, the new networks
give the designer the assurance that any measured am-
plitude aberration is not caused by the crossover, but
must arise from some other link in the system chain.
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APPENDIX
DERIVATION OF THIRD-ORDER EQUATIONS

The third-order all-pass derivation is started by sub-
stituting Egs. (24)-(26) into Eq. (22) using Eq. (37)
for P(s). Letting s = wj, taking the magnitude squared,
and clearing fractions gives
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(w® — brle* + brie? — 1)
+ (are’ — (27 + IR + arw)’
= (0° = Bo' + Bo® - 1)

+ (A0’ — Cw® + Aow)? (51)

where
A = bR + ar
B = aR* + ab + br?

C =R +adR + br + 1.

Now the w? coefficient on both sides of Eq. (51) must
be the same. This gives

(@ — 2b)y* = (B® - 2a)R* + (a* - 2b)r* .
Since R > 1, it follows that

b* — 2a = 0 (52)
which is equivalent to Egs. (39) and (42) of Section
8.3. The equality of the w* coefficients on both sides
of Eq. (51) gives

—2arhR® + 2br* — 2ar* = (a* — 2b)R* . (53)

Next, the fact that both sides of Eq. (51) must be equal
when o = 1 yields

(2 + hR® — 2ar)

= (R + (&> = 2b)R + r)* . (54)

Thus there are two cases. One of them results in

hR* = R + (a* — 2b)R + 2ar — P (55)
which is formula (40) of Section 8.3 when solved for
h. Substituting Eqs. (55) and (52) into Eq. (53) and
rearranging in descending powers of b gives Eq. (38)
in Section 8.3. These equations determine the first
Crossover.

The second case stemming from Eq. (54) gives

hR* = —R® — (a* — 2b)R + 2ar — 3 (56)
which is equivalent to Eq. (43) of Section 8.3. Finally,
substituting Eqs. (56) and (52) into Eq. (53) gives Eq.
(41) of Section 8.3 after appropriate rearrangement.

DERIVATION OF FOURTH-ORDER EQUATIONS

Eqgs. (45)-(49) of Section 8.4 are derived here. When
the polynomial (44) is substituted into Eqs. (24)-(26),
these into Eq. (22), s is set equal to wj, and the mag-
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nitude squared is taken, the result is

L(w) = R(w) (57)

where

L) = (o = brfe® + (2r* + hRYw*
- brlew® + 1)°

3.5

+ (are’ - cr'w S’

+ criw” — m‘m)2

R(w) = (0® — Bw® + Dw* — Bw? + 1)
+ (AmT - Co’ + Cw’ — Br.u)2
cR + ar
bR* + ac + br?
aR® + abR + ber + cr®
R* + a&*R* + b* + & + .
Equating the w'* coefficients of L(w) and R(w) gives
(@ — 2b)r* = (> — 2b)R* + (a® — 2b)F°
which reduces to
& — 2 =0 (58)

since R # 0. This is Eq. (45) of Section 8.4. Now
equating w'? coefficients in Eq. (57) gives

2R*h + 4t + (B2 — 2a0)r*

= (b — 2ac + 2R + rH
which simplifies to

R = (b* — 2ac + 2)R¥2 — 1 . (59)
This is equivalent to Eq. (46) of Section 8.4. Equating
o'® coefficients and substitution of Eqgs. (58) and (59)
gives
(@ — 2b)R™ + (a*> — b)(b* — 2ac + 2)R®
+ 2bR* — 2ac = 0

after a lengthy calculation. This is Eq. (47) of Section
8.4. Finally, letting @ = 1 in Eq. (57) yields

(2 — 2br* + hR* + 2r%)
= [R* + (&* — 2b)R?

+ (B2 — 2ac + 2) + r'1*.
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Substitution of Eqs. (58) and (59) leads to either (4 — 2ac + bHR® + 2(a® — 2b)RS
(b - 2ac)RS — 2(a®> - 2b)R* + 2(0* — 2ac + 4)R* — 4bR* + r = 0 .
— 2(b* — 2ac)R* — 4b = 0 These are Eqs. (48) and (49), respectively, of Section
or 8.4.
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CORRECTIONS TO “PASSIVE THREE-WAY
ALL-PASS CROSSOVER NETWORKS.”

I have discovered three errors in the above paper.!
The following corrections should be made: On page
636, Fig. 7 change the formula L, = 1/(KRy) to
L, = Ry¢/K. On page 636, Fig. 9 change the for-
mulaM =B -1 - K/F; - EFFKtoM =B — 1 —
K/F — EF/K. On page 637, Fig. 10 add the formula
T =N - PK/Q.
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626-639 (1984 Sept.).
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