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It is shown that ihree-way all-pass crossoverDelworks cannotbe succesfully derived
from two-way all pass networks jf easilr alignable passive ladder circuits are to be
used. New t.ansfer funciion triples are intodDced vhich do allow the ladder imple-
mentalion of ftree-way all-pass networks. Detailed circuits and alignment formulas
are given to show how the new crossover networks may be passively realized.
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Two-way all-pass crossover systems [1] haye become
an accepted standard in loudspeaker applications be-
cause oftheir flat magnilude response and the fact that
they can be passively realized. Unfortunately, as is
shown here, iftwo ofthese networks are cascaded, the
resulting three-way crossover is not all-pass. Even more,
there seems to be no way that the known two-way net-
works can be used to realize three-way all-pass cross-
overs. The aim ofthis paper is to present new transfer
functions which can be used for this purpose, and to
describe circuit topologies and alignment formulas that
may be used to implement them.

There are potentially many possible transfer funcrion
sets and circuit topologies that could be used to realize
three-way all-pass crossovers. The objective here is to
find transfer functions which can be realized by eco,
nomical circuit topologies with efflcienr alignmenr al,
gorithms. Nevertheless, higherordernetworkslequire
lensthy calculations.

1 ALL.PASS NETWORKS

The term all-pass was first applied to crossover net-
works by Garde [1] and is defined in terms of network
transferratios. We will use voltageratios, butthe same
functions may be viewed as curent ratios by using the
dual circuit realizations. lf Cr(s), C(r), . . . , C,(r)
are the voltage transfer ratios ofthe individual channels
of an n-way crossover network, that network is all-
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IC](∫)+ Q(s)+ +C"(S刈 ‐ 1 (1)

for all r = j(d, (,) > 0. In the usual audio terminology
the crossover has a flat summed-channel magnitude

Carde [1] derived the sequence of two-way all-pass
transfer function pairs defined by

億め‐詰,億め―瑞5  0
for″ Odd and

鼈。‐語 , 嗽め‐ポ  0
for n even, where At(s) is the lth-degree Bulerworth
polynomial. m - n 2. and the cro\\over frequency i,
1 rad/s. The first four Butterworth polynomials are listed
in Table L Network, realiTrng the odd-order pajrs are
commonly called Butterwo h crossovers and have long
been recommended for loudspeaker applications [2]
because theyexhibit both flatpowerand fla( magnirude
response [3]. Networks derived from the even-ord€r
functions are also known as Linkwitz-Riley crossovers.
Linkwitz [4] advocated them as loudspeaker crossovers
because lhe) help marntdin a venically slmmerric
acoustic radiation pattem. They are also noted [5] for
minimizing acoustic response variations caused by the
geometric separation and phase difference between the
drivers in a two-way loudspeaker system.



The popularity of the all-pass networks is clinched
by the fact that they can be realized by simple passive

circuitry, that is, resistance-terminated LC ladders. The

.ircuits and alignments for the Butterworih networks
can be found in any filter design handbook, and [6]
contains the same information for the Linkwitz-Riley

2 THREE.WAY NETWORKS

The low-pass, bandpass, and high_pass transfer func_
tions of a three-way crossover are denoted by CL(r),
CB(s), and C s), respectively. Ifor < (,)2 are the radian
crossover frequencies, then it is assumedthat the transfer
functions are frequency normalized to the geometric

mean (do of l,r and (l)2:

roo = V",i,oz. (4)

The normalized radian crossover frequencies r and n
are then defined bv
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3 CASCAOED TWGWAY NETWORKS

The simplest way to obtain a three_way network is
to cascade two-way networks. The cascade is formed
by using the output of the 6rst"stage high_pass section
as rhe input to the second stage. Now if bolh stages

are two-way all-pass networks, is this an all-pass

crossover? lf loading effects are ignored, the relevant

transfer functions arc easily found starting with Eq
(2) or Eq. (3). For example, with ,1 : 2,

無 め =赫

c.G) = #/.)
-t

'B''' - airrls;aksiR;

CB(∫ )=

CH(S)‐

(9)

(10)

(11)

(12)

(13)

(14)

while if 71-3

αめ=論

It follows that

＋
一

(6)

a3(rir)Br(r/n)

ln spite of Eq. (7), we will continue to use both r and

R in formulas so that the role of ahe two crossover
frequencies is clear at a glance.

The behavior of a lhree-way clossover dePends

strongly on the separalion between the two €rossover
frequencies. Because of this we define the crossover
frequency spread as o1('r, which with Eqs. (5)-(7)

β3(7′ 5)2,(R/S)

These functions can bc checkcd fOr a11‐ pass behavior

by graphing the dccibel magnitude

″ (o)=20 1oglCL(jO)+CB(jω )+CH(jO刈

ve6us the ftequency (,). If they sum to all-pass' then

the graph should be the o-dB line. The results for the

second- and third-order functions are shown in Fig- l.
spread : n'7 (8)

l  R‐ 3 獣ヽ

Note that R = 2 corresponds to a two-octave spread

and R : 3 to approximately three octaves.
We are interested in deriving transfer functions for

three-way all-pass crossovers which can be realized
with economical passive circuitry and efficient align_

ment procedures. The most direct approach would be

to somehow use ahe two-way all-pass functions we
now show that this is notpossible by any straightforward
technique.

Table 1. Butterworth polyromials through degree 4.

(^)

Frequency
(b)

Fie. l. Masnitude re:Donse ol lhree_wav cro\ro\et formed
by'cascadini lso-way ;ll pass cror:oveh. Lach graph shows
rispon<es for cro\\over frequenc, lPreads of rwo (R - 2)
and three (R = lrocta\er (r) Second otder. rbr Thtrd order

βl(χ )

22(え)

θ3(χ)

B4C)

‐ 1+

‐ 1+

‐ 1+

‐ 1+

+(2

χ

v5χ +χ2

″ +22+χ `

V2+2Vらχ
+V2)χ2+N/4+2 Vτ χ̀+′
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Each graph contains two responses, one using a two-
oclave crossover frequency spread (R : 2) and the
other three octaves (R = 3). The frequency scale is
logarilhmic and runs from two octaves below the tow
crossover frequency to two octaves above the high one-
The ve ical axis covers the rarge from 3 dB to 3

dB. When more than one polarity choice is possible,
the one giving the least response variation is used.

These Iigures ctearly show that cascading does not
yield an all-pass crossover. The resulis forhigherorders
are similar. Linkwitz-Riley (even,order all,pass)
crossovers have a fairly flat magnitude response for
large crossover frequen€y spreads, as the R = 3 graph
in Fig. l(a) shows. This is somewhat deceptive ifeach
stage is realized by passive LC ladders, because loading
effects produce eyen larger variation. Thus cascading
gives at bestonly an approximation to all-pass response,
and other approaches must be considered if exact all-
pass networks are desired.

The reader will note that the above claims are not
true ifthe three-way network is obtained by cascading
two lirst-order networks. In this case the three-way
network is not only all-pass, but satisfies the much
stronger constanavoltage property iniroduced in small
[7]. The shortcomings of first'order two- way networks
are widely known [8, sec. l], and they apply equally
well when more than lwo channels are involved. Thus
our main effort here is directed toward finding "higher
order" crossovers.

4 PARALLEL FILTERS

Another approach is to use the two-way all-pass
functions to realize separately iow-pass. bandpass, and
high-pass functions, and to realize the crossover with
these three filten in parallel. To achieve such a design
most efficiently, the low-pass two-way function is de-
normalized to / to obtain CL(r) and the two-way high-
pass is denormalized to R to get CH(r). For example,
based on the second-order fuflctions,

on the two-way low-pass function, where oB is the
desired center frequency and B the bandwidth of the
resulting bandpass function. We choose oB : oo : I
and , = /R - r as the normalized values for these
constanis. For the second- and third-order networks
this gives

CB(∫ )‐

and

C3(S)‐

,?tG' + txs"x

a:(″ s)Bl(s′R)

(15-2T)

(16‐ 2T)

(15‐ 2C)

respectively. The advantage of this technique is that
the alignmenl for the bandpass circuit is complelely
determrned by rhe lo\r-pa'c one. lhar is, ir i\ compu.
tationally efficienl. However, as Fig. 2 shows, the re-
sulting three-way networks are far from all-pass. The
graphing specifications here are the same as before.
The variation is similar if the higher order functions
are used, and changing values of oB and I does not
significantly improve it.

The second way to get the bandpass section is to
cascade low- and high-pass filaers. This method is less
effi cient computationally in passive realizations because
the bandpass must be separately aligned in order to
account for loading effects. The second- and third-
order bandpass functions are then

± 1

B][(S2 + 1)′ (β∫)]

-1
CB(S)―

and

CB(S)=
± 1

α9-為
鎌9‐ 満
and for thc third‐ order functions,

α9‐ 瑞

鎌め‐満
There are two simplc ways tO get a bandpass function

Onc is to use the lol″―pass to bandpass frequeney trans‐

formation

S→ (`2+鵡 )′ (β∫)

'3(″

∫)'3(S′ R)
(16‐ 2C)

respectively. Fig . 3 show s that the use of thi s bandpass
function stilldoes notresult in all-pass response. Sirniiar
variations occur using the higher order two-way net-

s IMPLICATIONS

Other practical approaches to coaxing alt-pass be-
havior from two-way-based networks come 10 nothing.
For example, independently varying the gains of the
three channels does not flatten the response, it merely
changes the ripple pattem. From these considerations
it may be concluded that three-way all-pass crossovers
are ro be mosr efficienrl) obrained by denvrng neu
transfer functions with the all'pass condition (1) as th€
goveming constraint,

The objective then is to derive triples of functions
satisfying Eq. (l), which are realizable by economical
passive circuitry and efficient alignment algorithms.
The easiesl way to attain the latter conditions is to
assume thal the complete crossover call be derived from

(151)

(15‐ 3)

(161)

(16‐ 3)



a single low-pass filter function by the us€ ofcascading
and frequency transformations. To realize and align
the low-pass function efficiently, it is desimble to as-

sume that it is an all-pole function. This will also max-
imrTe the slopband atlenuation oI rhe resulting cross-

PASSIVE THREE WAY ALL PASS CROSSOVER NEp″ ORKS

TRANSFER FUNCT10N FORM

We will assune

m― 瑞
where

P(∫)=∫ `+α l∫`1+

± 1
CD(6)=

CH(∫)―

億0-轟

CB10 ‐
Plrls)P(srR)

I( H{r) = pGhl

(17)

+ α″■s + 1(18)
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is a Hur\ritz polynomial. Then the low-pass section
can be realizedby anelementary ladder- The full transfel
function complemen( can then be obtained rn various
ways, but we will concentrate on the three methods
used in Sections 3 and 4

1)CaSCade dcrived:

億9-詰

ら0‐
満

鎌 0-満

2)TranSfOrmation bandpass and high― passI

“
0‐ 為

轟!蝋畢掛辮鸞職
(b)Third order

-3

辮鱚 鐵 繹

(19-L)

(19‐ B)

(19-H)

(20‐ L)

(20‐ B)

(20-H)
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P[(s2 + 鵡 )′βsI

1

P(R′S)

withoB = oo(= 1)and, = R - r.
3) Cascaded bandpass, transformation high-pass:

(21‐ L)

(21-B)

(21H)
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Option 2) has an apparent efficiency advantage be_

cau'e both Ihe bandpass and rhe hiSh-pa" alrgnmenr'
are automadcally determined by the low-Pass alignment.
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Option 1) has the advantage of a better stopband at-
tenuation in the high-pass section.

To derive an all-pass transfer function iriple based

on these options we must find values for al, dr, . . .,
d,-r so thaa the equation

lcl(ji,)) + cB(j.) + cH(jo) = | (22\

is satisfied for all o >. tf CL(jo) + CB(jo) + CH(jo)
is expressed as a single rational function and its squared
magnitude is taken, Eq. (22) reduces to the statement
.hat two polynomials i n (,) must be identical . This gives

rise to 4n I equations in dr, a!, - - - , tlr-|, r, R,
which must be solved for the ar with r and R as fixed
parameters. Because of symmetry, options 2) and 3)
yield only 2, independent equations, but even so the
numberofequations is still too great to expect a solution.

The number ofequations arising from options l) and
3) can be substantially reduced by replacing P in the
bandpass functions with

Po(//r)O(s/R)

I

Po\rts)Qo\Rts)

where 0 is a second Hurwitz polynomiai of degree x,
then usabie solutions exist, at least for n = 2. However,
the solution is more difficuitto find fora givenn because

2, - I rather than ll equations must be solved.

8 TH F EE.I/I'AY ALL.PASS FUNCTIONS

The system of equations resulting from Eqs. (22)
(26) is nonlinear and contains the additional variable
R. Thus the solutions will depend on the crossover
frequency spread. In oiher words. we should not expect
to be able to use the same polynomialP(r) for all three-
way all'pass crossovers ofa given order. The lorm of
the system ofequations which must be solved depends
on the order r, and it does not appear possible to solve
it for arbitrary rl. we will describe solutions through
order 4, which should cover mosl conceivable audio
applicalions.

8.1 Flrst Ordel

This case is included simply for completeness. Be'

P(s):s+l \2'.1)

is the only polynomial of degree 1 and the form of Eq.
(23), I is rhe only free parameler in the system of
equa(ions. Substituting Eqs. (23) (25) inro Eq. (22)
gives

sl+(2r+hR)s +11 : s']+(R+r)r+1

The polynomiais inside the absolute values are the same

if

2t+hR=R+t.

l

CL(∫ )~ P(S′ r)

CB(∫ )‐

Po(r) = r' + a, 15' I + +alr+1
(23)

Note that P0 is obtained from P by reversing the coef-
ficient order. This additional functional symmetry re-
duces the number ofequations to 2n - lforoptionl)
and to ,l for 3). Thus if one more variable can be in-
troduced in the modified option 3), that form will give
a system of,1 equations in n unknowns and good pros'
pects for a solu(ion.

A successful ,rlh variable turns out to be a bandpass
gain faclor i, that is, we assume the functional forms

,l( L(r) : P(srJ

CB(∫ )‐ Po(//r)Po(rin)
(2s)

Icr6) = ptn,r 126)

The problem now is to fir,d at, a2, . . . , a" r. n so
thal Eqs. (24)-(26) satisfy Eq. (22), and so that P(r)
is a Hurwitz polynomial. The parameterl can be either
positive or negative to indicate the polarity to be ob-
served in the bandpass section. A crossover with these
transfer functions can be assigned an order. namely n.
just as for the standard two-way crossovers. Further.
.he orderhas the same signilicance in that the slopband
asymptotic anenuation rate will be 6n dB per octave
in all channels for the xth-order network.

7 ALTERNATIVE FORMS

Before proceeding. it should be emphasized that the

transfer function forms chosen here are not the only
ones that can be successful. As a matter of facl. if the

cascade-deiived option l) is modi6ed to

Wlih this choice of I and P, the crossover denned by
Eqs. (24)-(26) has both constani amplilude and zero
phase, ihatis. itdeiinesathree-channelconstani-voltage

As mentioned in Section 3, a lirsl-order three-way
constant-voltage crossover can also be realized by cas-
cading two'way seclions. It is preferable to the one

described here for two reasons. First it can be passively
rmplemenled $ilh le.' compurrtion. becau'e a garn

(24)

which yields

PAP[RS



factor is unnecessary and no bandpass filter is required.
There are no loading effects bet\reen the lwo stages
because a first-order two-way network is a consiant-
resistance network. This assures that its combined power
response is flal, which is the second reason it is to be
preferred.

8.2 Sscond Ordsr

The required polynomial form is

PASSIV[THREE rvAY Att PASS CROSSOVER NEn″ ORKS

P(s) = 5:ao, *, (29)

In this case P and P0 are identical and a and i are the
unknowns. Substitution of Eqs. (23)-(25) into Eq. (22)
yields

lsa + arsr + Ql + hR'?)s'1 + ars + tl

= lra + d(R +,)rr + (,R2 + a2 + /)s2

+a(R+/)s+ I (30)

This equality cannot be satisfied by making the two r
polynomials equal, so the cmssover cannot have the
constant-voltage property. To oblain equalions in a
and ,, Eq. (30) must b€ converted to a magnitude-
squared expression usinS r : oj. This givcs

Ir ol + ,R2)(,2 + o4l2 + a'l@ - o3)'1

= tt - (R, + a2 + l\ax + (D4lz

+ a2(R + r)2(o - (,)'? (31)

which must hold for all o,O Hence,at o‐ 1,

(2+2r2+71R2)2_(2+R2+α 2+72)2

This implies either

2+2′2+ヵR2_2+R2+α 2+′ (32)

Or

2+2′ 2+"マ 2=_2-R2-α 2_r2

(33)

Nextthc o2 coeFncients ofthc pOlynomialsin Eq(31)

must be equal,so

a2′ -2(2′ +′R2)

= θ2(R + r)2 _ 2(R2 + α2 + ′)  (34)

Now condition(32)is inCOmpatible with this as itlcads

to R ‐ O Thus Eq (33)is the Only choice leading to

a solution Solving Eqs (33)and(34)simultaneously
glves

232

2c2-1)
θ ‐
Rヽな 2-2

and

″=― 〔1+(α2_4)′ +3r4] (36)

From Eq. (35) we see that therc is a second-order
all-pass crcssoverfor all values ofR > V2. This means
that the crossover spread must be more than an octave.
This is not to say that an all-pass crossover does not
exist for R < V2, but ifone does, its transfer functions
do not have the form of Eqs. (23)-(26).

It is interesting to note that a + 2 as lR - 6 This
can be interpreted as saying that the transfer functions
found here approach the known two-way all-pass
transfer functions. In this sense the new three-€hannel
crossover is a natural analog of the two-way all-pass

Formula (35) implies that d > 2 for all allowable R.
This fact and Eq. (36) show that the multiplier, is
always negative, that is. the bandpass polarity must
be reversed. This is consistena with the fact that the
two-way second-order all-pass network uses opposite
polariaies in adjacent channels.

8.3 Thlrd Orde,

For third-order crossovers the polynomial P has the
form

P(S)=S'十 αJ2+。 s+1 (37)

This is the first instance in which P and Po may be
distinct. This fact complicates the derivation, so the
details are relegated to the Appendix, where it is shown
that there are two possible solutions.

The values ofa, ,. and i for the first can be obtained
by finding , as a positive roo( of

,5 + (R4 + 4l\b3 - 8b2 + 4Rzb

-8(Ra+l)=0 (38)

(35)

(39)

(40)

and then computing α and力 from

a = ら2′2

and

ヵ =1+(α 2_2b)″2.2ar4_r6

Table 2lists solutions forR values from 1.4 to 5 in
0.1 steps for low R and 0.2 steps for larger ones.

The second solution results from finding, as apositive

b5-(Rr+4/)b1 - \bz + gR2 + 8/)b

r8(R4+l):o (41)

JOuRNAL OF THE AUD10 ENGINEERING S,0日 Y



BULLOCK

and calculating a and l, ftom

a: b1t2

and

h=-r-(ar 2Dl +2ar4 - 3t6. (3)

Solutions are listed in Table 3 for I between l-7 and

5 in the same format as Table 2

Solutions of the Iirsi system ac(ually exist for any rR

> 1, but were not tabulated for the smaller R values

because it is expected that they would rarely be used

inpractice- Solutions ofthe second system do notexist
for I < 1.7. (This value is approximale; the exact

value is between 1.6 and 1.7.) Il is clear from the

tabulated data that the bandpass polarity is observed

in the first solution and reversed in the second. This is

consistent with the situation for two'way all_pass

crossovers, that is, all-pass response cat be obtained

for third-order crossovers whether the polarity of ad_

jacent channels is the same or oPPosite. For eifier
crossover it is true that a + 2 

^nd. 
b + 2 as R+ --

Thus these transfer functions are natural three_channel

extensions of the two-way all_pass functions.

8.4 Fourth Orde.

The fourth-order transfer functions require a fourth_

degree polynomial of the form

Again, the derivation is lengthy and so is caried out
in the Appendix. The result is that there are two Possible
solutions. The relevant values of a, ,, ., and ,r for the

first can be found from the equations

c:_2b:0 (45)

(b1 2ac + 2')RB - 2R3h - 2 = o (46)

(az 2b)R1o + (at - b)(bt - 2ac

+ 2)R6 + 2bR1 -2ac=o 147)

(b2 - 2ac)R6 2(a'1 - 2b')R4

- 2(b2 - zac])Rt -a6=0. (48)

Solutions of this system exist for any R > 1.2 (ap_

proximately) and are tabulated in Table 4 for]? between

i.4 and 5.'As can be seen from the table, a + 2V2,
b + a. t - 2\,/2, and r+ 1 as lR- -, which means

that this crossover is a natural extension of ihe fouth_
order two-way all-pass crossover.

A second solution can be found by solving Eqs. (45)-
(47) and

(b2-zac+qRq+2kt-zDR6

+ 2(b1 - 2ac + 4)R4 - 4bR2 +4 =0.
(49)

On an intuitive basis we should not expect this second

solution, because there is no corresPonding two_way
analog. If this solution is examined as R r r, it is

found that a, ,, c + 2. ln other words, the analogous

lwo-wa! transfer lunclron' \tould have the denominalor

rr" - i,' 2r) - 2r I, = r. ' ltr rs) + lt.
which does not yield a passively realizable iransfer
function [9, p. 343]. This means that the three-way
functiofls can be expected to have a high-Q second-
order section, which complicates the problem ofcircuit
design. Further, there is an approximately 180o phase

difference between adjacent channels, a feature that
does not bode well for its use as a Ioudspeakercrossover.
For these reasons it was decided not to tabulate its
parameters. The discovery of this unexpected all-Pass
crossover conlrasts sharply with the situation for two-
channel crossovers, wherethepassiveall-passconstraiot
yields a unique crossover for each even order 0l.

8.5 Higher Order All-Pass Crot9overs

The techniques implicil in the above de vations can

be used to find transfer functions of higher order all-
pass crossovers, but the relevant equations aPPear to
increase dramatically in their€omplexity with the order'
The easier procedure forhigherorders is to use cascaded

two-way all-pass networks with a crossover frequency
spread of at least three octaves. This does not yield

a3

(42)

P(S)=∫4+α S3+ら s2+c∫ +1

Table 2. Parameiers for posiiive-polarily bandPass ihnd
order three way all-pass crossoYer'

(44)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
42
44
46
48
50

1 4794
1 5261
1 5683
1 6064
1 6405
1 6710
1 6983
1 7228
1 7446
1 7642
1 7817
1 7975
1 8118
1 8246
1 8363
1 8468
1 8564
1 8732
1 8872
1 8991
1 9092
1 9179
1 9254
19319
1 9370
1 9427
1 9471

1 7201
1 7470
1 7711
1 7924
18113
1 8381
1 8430
1 8562
1 8679
1 8784
1 8877
1 8961
1 9036
1 9103
1 9164
19219
1 9269
1 9355
1 9428
1 9489
1 9541
1 9585
1 9623
1 9657
1 9686
1 971[
1 9733

09988
09973
09962
09956
09956
09958
09963
09968
09971
09975
09979
09982
09985
09987
09989
09990
09992
09994
09996
0,997
09998
09998
09999
09999
09999
09999
09999



exacr all-pass response, but is within a fraction of a

decibel and eliminates the need for very lengthy cal
culations. Even so, the even-order cases wiU involve
additional calculations because alignments must be ad-
justed 10 account for loading effects.

PASSIVE THREE WAY Atし PASS CROSSCtER NETv・VORKS

9 POWER HESpONSE

A crossover has the constant‐ power property if its

channel transfer func● ons Ct(s),… … Ca(∫)Sa● s″

Table 3. Parameters for negalive-polarity bandpass third-
o.der three vay all-pass crossovers.

forall o > 0. This property is desirable in loudspeaker
crossovers because such a network wiu not add dis-
tortion to the overall acoustic power response. The
odd-ordertwo-way all pass networks have this propeny.
bul none of the new three-way networks does. Fig. 4
shows the power responses of ihe new second-. third,,
and fourth-order networks, respectively. The same graph

ICl(j。)2 + IC2(jω)2 + + lσ効(jo)2 ‐ 1

(50)

(a)

I!e quen c Y
(c)

Fig 4. Combined powerrelponse oflhe new three-way all-
pass crossover .elworks Each Sraph shows responses for
dos$ver frcquency spreads oflwo (i : 2) and three (i =
3) octaves. (a) Second order. (b) Thjrd orde.. (c) Fourth

17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
42
44
46
48
50

27708
2 5580
24576
23919
23435
2 3055
22747
22489
22270
22082
21918
2 1773
2 1646
2 1532
2 1338
2 i180
2 1049
20,39
20846
20766
20697
20640
20584
20538

23541
22618
22170
2 18'2
2 1649
2 1473
2 1329
2 1208
2 1105
2 1015
20937
2086S
20807
20752
20658
2 0582
20518
20464
20418
20379
20345
20310
20290
20267

-14882
-12242
-11314
-10846
‐1 0575
-10405
-10294
-10218
-10650
-10126
-1 0098
-1 0077
-1 006]
-1 0049
-1 0033
-10022
-10016
-10011
-10008
-1 0006
-1 0004
-1 0003
-1 0003
-1 0002

＾
ｍ
Ｏ
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、
ｏ
，
ｏ
ヘ

（
ぬ
も
）
舞
ｏ
，
ｏ
餞

（
口
０
）
漁
ｏ
，
ｏ
■

Tabic 4  Parametersお r fourth order three way all pass
crossovers

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
42
44
46
48
50

24304
25051
2565,
26130
26512
26819
2 7066
27766
2 7428
2 7561
27669
2 7758
2 7832
2 7894
27946
2,989
28026
28084
28127
2 8159
28183
2 8202
2 8216
2 8228
2 8237
2 8244
28250

37515
3 7544
37816
3 8126
3 8415
3 8666
3 8879
3 9056
3 9202
3 9323
3 9423
3 9506
39575
39633
3968[
39722
39757
3981]
39852
39882
39905
39922
3 9,36
3 9947
3 9955
3 9962
3 9,68

2 7392
27402
2 7501
27614
27718
2780,
27885
27948
2 8001
2 8044
2 8080
2 8109
2 8,34
28154
28[71
28186
28198
28217
2 8232
28242
2 8251
2 8257
28262
28265
28269
2 8271
2 8273

1 3120
1 1444
1 0726
1 0382
1 0247
1 0114
1 0064
1 0037
0021
0012
0007
0004
0()02

0001
1 0001
1 0000
1 0000
]0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
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specifications are used as in earlier figures.
It app€ars that the only hope of realizing three-way

networks with both the constant-power and all-pass

Fope ies is to abandon ladder circuits. Thus it is likely
that the most practical approach would be to permit
active realizations.

IO CROSSOVER FREOUENCY SPREAD

As already noted, the three-way all-pass transfe!
functions (24)-(26) depend on the crossover frequency
spread. In general for small values of lR (R < 3), lhe
defining polynomial P(s) is quite different frrm the

corresponding two-way allpass polynomial. This is
why the attempts to obtain all-pass response from th€
known two-way functions failed. However, for large
crossover frequency spreads (R > 3), P(r) is quite close
to its two-way counrerpart. In practice this means that
the two-way polynomial could be used in place ofP(r)
without wide response variations resulting. In particular,
it appear\ thdl rhe flpple cau.ed b] such an appr.r\i
mation when lR > 3 is smaller than I dB. Because
polynomial coeflicients do not have to be calculated,
the approximation is computationally moie ef6cicnt.
However, P must be found for small spreads. and the
procedure is no more dimcult with large ones. so we
do not make use of this approximation.

11 PASSIVE REALIZATION

The various crossover transfer functions introduced
above can be realized passively using standard circuit
topologies, but there are several complications. Firs1,
many of the required alignments are new and so are

noa tabulated in any handbook. Second, realization of
the cascaded bandpass filter is not explicitly discus!ed
in circuit design references. Third, provisions for re'
alizing the gain facrori mustbe incorporated. Therelbre
a self-contained treahent ofthe passive realizalion of
the new networks is inctuded here. This verifies the
claim that the new crossovers are indeed passively re-
alizabie.

The resistance-terminated LC ladder circuit is used

for passive realization. This topology is traditional in
crossover desiSn, and alignment formulas can be

straightforwardly derived; but two facts regarding-its
use must be kept in mind. Firsr, it should ideally be

driven by a zero resislance source and second, its ter-
mination should be resistive. It will deviate from ils
theoretical response in propo ion io variations from
these siates. In loudspeaker applications, the first re
quirement can be sarisfied practically by rhe use of a

high-damping-faclor amplifi er.
The second requirement is more diflicult to satisfy.

because atypicai loudspeakerdoes not present a resistive
impedance and cannot always be equalized to do so.

The practical goal should be to equalize to the flattest
impedance practicable over the widest possible fre
quency band conraining lhe cro\so\er irequencie\.
Theore(ically such equalization can be achieved exactly
for any loudspeaker fitting the Thiele-Small models

by paralleling the driverterminals with an LCR circuit
whose impedance is the dual of the loudspeaker's with
respect to the driver's dc resistance. However, lhe re-
sults are practicaily r€stricted by the accuracy of rhe
model, as well as by nonideal component behavior and

component size limiiations in the equ.lizing LCR net'

Crossovers can be formed by either parallel or series
connection of Iilters. We regard the transfer functions
as voltage ratios and helce use parallel connections.
The series connection can be obtained by regarding
the transfer funcrions as curent ratios and using the
duals ofthe circuirs presenred. Ail the circuits described
here have a natural positive polarily. If the crossover
ofinterest calls for a negative bandpass polarity, reverse

the naaural polarity of its termination.

11.1 Low-Paas Circuli

The low-pass crossover section is realized using lhe
circuits and aiignm€nl forrnulas in Fig. 5 for the first
ihrough .he fourlh order, respectively. These circuits,
as well as a1l subseqLrent ones, have componen! values
which are frequency normalized to I rad/s and imped-
ance normalized ro a l-o terminating resistance. The
resulting fitter realizes the CL(r) in Eq. (24). The circuits
may be denormalized to a low'section load resistance
of R{' and a lower radian crossover frequency or by
multiplying each inductorvalue bynw/(,r and dividing
each capacitor value by iRwor.

'11,2 High.Pass Circuit

The frequency- and impedance'normalized high-pass
circuit and alignment formulas are obtained by apPlying
the low-pass to high'pass frequency transformation r
+ th to the circuirs in the lasl section. The resulting
cilcuit is found by replacing each inducrorby acapaciror
and each capacilor by an inductor. The normalized
alignment formulas are rhe reciprocals ofthe low-pass
rormula\ urth inducror and capdcrlor name\ rnler
changed to fit the circuit. Fig.6 gives the results for
orders 1 through 4, respectively. This high-pass fi1ier
may ihen be denormalized to the hish section termi-
nating resistance lRr and the high radian crossover fte-
quency (,2, just as was done in the low-pass case, that
is, by multiplying each inductor value by Rr/o, and
dividing each capacitor value by lRror.

11,3 Bandpass Circuit

Figs. 7 10 show the bandpass circuit topologies and

their alignment formulas for orders I through 4, re'
spectively. These circuits are denormalized by multi-
plying each inductor value by RB/oL), dividing each

capacitor value by RBo0, and multiplying Rrn by RB.

where XB is the desired terminating resistance and o0
is given by Eq. (4).

The correct bandpass gain factor /t is set in each of
the above circuits by the value of lhe resistor R$. An
alternative approach is worth considering when the
crossover is part of a loudspeaker system. Find the



bandpass with R," = 0 in both the design formulas and
the circuit. It then has an excess gain, in the amount

E = 20 loe (rfl) dB

where fl is defined in Table 5 for each order, and /( is
found among the design formulas for the circuit used.

PASSIVE THBEE-I,IAYALL.PASS CROSSOVEA NETWORKS

lf the midrange driver nominal sensitivity is SM. then
the value of /l may be automatically accounted for by
usrng SM i E as irs effective value rn (he sensrtrvil)
matching phase ofdesign. E is always positive, so this
alternative allows the possibility of using a midrange
driver of lower nominal sensitivity rather than that of
the woofer and tweeter-
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12 DESIGN PROCEDURE

The step-by-step design procedure for the new net-
works is as follows. Choose a crossover order (1, 2,
3, 4) and crossover frequencies i < ,. From X =
\/frti and r : l/R determine the polynomial coeffi-
cients and gain factor using Eq. (28) for order 1, Eqs.
(35) and (36) for order 2, Table 2 or 3 for order 3, or
Table4 for order4. Calculate the normalized low-pass
and high-pass component values from Figs. 5 and 6,
and denormalize them to the desired load resistances
and crossover frequencies as described in Sections I l.l
and 11.2. Calculate the necessary bandpass parameters

in

V1 0

Cぃ
   
ヽ
3.

from Table 5 and find the normalized component values
ftom the appropriate one of Figs. 7-10. Finally, de-
normalize;the radian center frequency oo = 2rvi,
and the desired load resistance as described in Section
11.3.

13 CONCLUSTON

Two-way all-pass crossovers are widely recom-
mended because they offer a flat combined voltage
magnitude response in a network that can be realized
passively by simple ladder circuits. In addition a de-
sirable phase response can be obtained with the even
orders, and a flat combined power response with the
odd orders. We have shown that there is no elementary
way to implement three-way all-pass crossovers from
these knowo two-way networks, ln particulat, neither
cascading the two-way networks nor paralleling filters
derived from lhem will do thejob, even ifthe inevitable
loading eff€cts are ignored.

Because ofahis, we have derived new transfer function
triples which do have the all-pass property. There are

several forms which these functions might reasonably
have raken. We prcked lhe one thar apparentl) require.
the least amount ofcomputation to obtain the functions
and to align the relevant circuits. The form is that of
a parallel filter crossover with a bandpass section ob-
tained by cascading low- and high-pass filters derived
directly from the low-pass section of the crossover.
Also, the high-pass section is derived by a low-pass
to high-pass frequency transformation fmm the low-
pass \eclion. The facr rhar rhe crucial lo\r-pas' seclion
is an all-pole fllter assures that the complete filter can
be realized economically by simple resistance-termi-
nated LC ladders.

These three-way netwo(ks have neither flat combined
power in the odd orders nor the desirable phasebehavior
in the even orders, as do their two-way counterparts.
Even so, the crucial all-pass response is prese ed, and
rhe aforenenrroned propeflre\ are (alisfied in an ap.

K・A

Ln‐ K/H‐ 1
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0

CIn‐ :′ (AR。)L2n Ⅲ ERo K■ 8-1

Li n ・  AR。′ヽ   Ran ‐ K/H‐ l  E ・・ AA/К

C2n=マにRol R。‐喝n+:
Fig. 8. Second'order bandpass circuits and alignment for
mulas for the nes crossovers. CalculateA, A. H pdamcters
from second-order formulas in Table 5.
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Fig. 7. Fnsi-order bandpass ci.cui( and aligtrment formDlas
for the new crossovers. Calculate,4, Lparameters from first-
order formulas in Table 5.
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な  ロ
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S ‐ C―AF/E
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К‐ F―IE/G

L ‐ A熟/E

" 

‐ 」―G“/K

P ‐ 1-3/K

Q‐

“

―N/P

Fig. I 0. Fourrh'order bandpas s cncuirs and aliendents formu 1as for the new oos so!e(. Calcu lale A , a. C, D , L para.nereB
from founh order formulas in Table 5.

A‐ R十 ′
〃 ―

|た
R

with parameterた flom Eq(28)

A‐ α(R+′ )

3‐ R2+α 2+′

″ ‐
|″
R2

with parameters` たfrom Eqs(35)and
(36),respectively

A‐ 飲 +α′
B=α R2+′ ♭ +♭′
C‐ R'十 `2R+ら

レ +7'
〃 ‐ |力 R'

with paraineters` ら 力from Table 2 or 3

A‐ でR+α ′
B‐ ♭R:十 αε 十 ら/2
C ‐ ′R' 十 αわR 十 ら

`′
 + `′

'

D― R`+α =R2+′ +でア +74
″ ―

|力
R4

with Parametcis α ι.ε ″
"om Table 4

These new ihree-way crossovers should be of sig-
ni6car! value tothe audio equipment designer in general
and to the loudspeakerspecialist in particular. We realize
that the mosr effecrive loudspeaker crossover is arrived
at by successive approxinations ofa specified overall
acoustic output, but at the very least these new networks
allow the approximation process to be started with a

better initial configuralion. Also, the new networks
give the designer the assurance thai any measured am-
plitude aberration is nol caused by the crossover, bul
must arise from some oiher ii.k in the system chain.
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APPENDiX
DERiVAT:ON OF TH:RD・ ORDER EQUAT:ONS

The third‐ order all― pass derivation is started by sub―

stitutin8 Eqs (24)―(26)into Eq (22)using Eq (37)
10r P(∫)Lcting s― ●,taking the magn■ ude squared,
and clearing flactions gives
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(10δ
 ― みr2o4 + ゎ′。2 - 1)2

■ (αア0` ― (2r3 + みR3)。
3 + 
αrll)2

‐ (06 - 204 + a102 _ 1)2

+ (Aω' 
― CC3 + Ao)2(51)

where

A=わ R+α 7

′ =コR2+α。 +らノ

c_R3+α 22+♭ 2′ +73

Now thc ω2 coeFncient on both sides of Eq(51)must

be the samc This 8ivcs

(α
2-2ら

)′ ‐ (12-2α)R2+(α 2_2ら )r2

Since R>1,it Fo1lows that

12-2θ =0          (52)

、vhich is cquivalent to Eqs (39)and(42)of SeCtiOn

8 3 The equality of the o4 coeFncicnts On both sides

of Eq(51)giveS

-2ar力R3 + 2らr2 - 2α 74 _ (α2 _ 2み)R4 (53)

Next,the factthat both sides Of Eq (51)must be equal

when ω ‐ l yields

(2′ + たR3 - 2α′)2

‐ (R3 + (α
2 _ 2み
)R tt r3)2  (54)

Thus there are two cases Onc ofthcm results in

71R3 _ R3 + (α 2 - 2わ)R + 2αr - 73    (55)

which is fOrmula(40)of SeCtiOn 8 3 whcn solvcd foI

″ Substituting Eqs (55)and(52)into Eq (53)and
rearranging in descending pOwers ofら gives Eq (38)

ln Scctlon 8 3  Tllese equations dctcrminc the nrst

crossover

Thc sccond case stemming from Eq(54)gives

llR3‐  ―R3_(a2_2わ )R+2ar-3r3(56)

which is equivalcntto Eq (43)ofSeCtiOn 8 3 Finally.

substituting Eqs (56)and(52)into Eq (53)giveS Eq

(41)oF Section 8 3 after appropriate rearrangement

DER:VAT10N OF FOuRTH‐ ORDER EOuAnONS

Eqs(45)(49)of SeCtiOn 8 4 are derived hcre Whcn

the polynomial(44)is subStituted into Eqs (24)― (26),
these into Eq(22),s is Set equal to ol,and the mag

nilude squared is taken, the result is

Z((,)) : R(o) ′̈て０

ι(0)‐  (ω
8 - わ″2。6 + (2′ + ′択4)ω4

_ ゎr21。2 . 1)2

+(arω7 _ `r'0' 十 c′ω3 - α70)2

R(0)‐ (08 - βω
6 + Dω4 _ 

′。2 + 1)2

+ (ムω7 _ c.5 + Cω ' 一 Bo)2

4=cR+α 7

B=ゎ R2+aC+″ 2

σ =択 3+α タマ ■ わεr+ε r'

D=R4+α 2R2+ら2+`2′ +r4

Equating the ω
14 coeFncicnts of ι(o)and R(ω )giVes

(a2_2ら)r2_(c2_2ら )R2.(α2_2あ )′

which reduccs to

`2-2ら
-0

sincc R ≠ O This is Eq (45)oF Section 3 4

equating 012 cocFncients in Eq (57)givcs

欲
4ヵ +474+(ら 2_2α c)/4

(58)

Now

_(ら2_2ac+2)●4+/)
which simplines to

R8カ ‐ (ら
2-2α c+2)R8′2-1   (59)

This is equivalent to Eq (46)oF Section 8 4 Equating

01° COefnCients and substitution of Eqs (58)and(59)

glves

(α
2 _ 2ら
)R10 + (α

2 - み)(ら2 _ 2θε + 2)R`

+2らR2_2θ ε -0

aftcr a lcngthy calculation This is Eq (47)of SeCtiOn

8 4 Finally,lctting o - l in Eq (57)yicidS

(2 - 2わ r2 + みR4 + 2r4)2

_ [R4 + (α2 _ 2レ )R2

+(ゎ2_2θ で +2)+74]2
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Substitution of Eqs (58)and(59)leadS tO either

(b2 - 2ac)R6 - 2(a2 _ 2レ )R4

-2(ら2-2α
`)R2-4ら

-0

0r

PASSIVE THREE●AY ALし PASS CROSSOVER NEい″ORKS

(4 - 2α G + ら
2)R8 + 2(α 2 - 2レ

)R6

+2(わ2_2α ε +4)R4_4レ R2+r=0

These are Eqs (48)and(49),reSpectively,of Scction
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CORRECT10NS TO.`PASSiVE THREE‐ WAY
ALL‐PASS CROSSOVER NETWORKS"

I have discovered three errors in the above paper:

The follo、Ⅳing eOrrections sllould be made: On pa8e

636. Fig 7 chan8e the formula L。  ‐ 17(KRO)lo
L, ‐ RO′ K On page 636,Fig 9 change the for
mula M=B-1-K′ F。 ― EF′Kto M― B-1-
K′F ― EF′ K On Pa8e 637,Fig lo add the formula
T‐ N ― PK′Q
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