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An investigation of the equivalent circuits of loudspeakers in vented boxes shows that
it is possible to make the low-frequency .acoustic response equivalent to an ideal high-
pass filter or as close an approximation as is desired. The simplifying assumptions appear
justified in practice and the techniques involved are simple.

The low-frequency performance of a loudspeaker can be adequately defined by three
parameters, the resonant frequency f., a volume of air V,,, equivalent to its acoustic
compliance, and the ratio of electrical resistance to motional reactance at the resonant
frequency Q.. From these three parameters, the electroacoustic efficiency n can be found
also. A plea is made to loudspeaker manufacturers to publish these parameters as basic
information on their product. The influence of other speaker constants on these param-
eters is investigated.

When f, and V,, are known, a loudspeaker box can be designed to give a variety of
predictable responses which are different kinds of high-pass 24-dB per octave filters. For
each response, a certain value of Q is required which depends not only on the Q. of the
loudspeaker but also the damping factor of the amplifier, for which a negative value is
often required.

The usual tuning arrangement leads to a response which can be that of a fourth-order
Butterworth filter. This, however, is only a special case, and a whole family of responses
may be obtained by varying the volume and tuning of the box. Also an empirical “law”
is observed that for a given loudspeaker the cutoff frequency depends closely on the
inverse square root of the box volume. The limitations of this “law” may be overcome
by the use of filtering in the associated amplifier. For example, for a given frequency
response, the box volume can be reduced at the price of increased low-frequency output
from the amplifier and vice versa, with little change in the motion required of the loud-
speaker.

Acoustic damping of the vent is shown to be unnecessary. Examples are given of
typical parameters and enclosure designs.

Editor’s Note: The theory of vented-box or bass-reflex
loudspeaker baffles has always seemed to have an air of
mystery, probably because the total electroacoustic sys-
tem has four degrees of freedom and seems four times
as complicated as the closed-box baffle with its two de-

valuable calculations. Those working in the design of
loudspeakers have used these analysis techniques and
probably asked essentially the same seven questions that
A. N. Thiele recognized at the turn of the previous
decade.

grees of freedom. Beranek gives a good foundation for
theoretical analysis and Novak has performed numerous

* Presented at the 1961 IL.R.E. Radio and Electronic Engi-
neering Convention, Sydney, N.S.W., March 1961. Reprinted
from Proceedings of the IRE Australia, vol. 22, pp. 487-508
(Aug. 1961). The author was formerly with E.M.I. (Aust.)
Ltd., Sydney, N.S.W.
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The seven questions and their answers were published
in the August 1961 issue of the Proceedings of the IRE
Australia, and the elegance of the answers adequately
justifies republication of Thiele’s work in the Journal of
the Audio Engineering Society. In his classic discourse
Thiele observes that the topology of the equivalent cir-
cuit (Fig. 1) is simply that of a high-pass filter. If suffi-
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cient simplification can be justified, Thiele reasons that
the methods of modern network synthesis should be
applicable to loudspeakers. This is a profound observa-
tion because it means that once the system transfer
function is chosen, a logical sequence can be followed
to specify driver and baffle parameters. This is much
more efficient than the cut and try methods based on
cither analysis or measurements,

Although the idea is profound because of its simplicity,
much work is required to develop, utilize, and demon-
strate its use. In the interest of compatibility with format
in this Journal, we have received permission from A. N.
Thiele to republish his work in two parts. This first part
develops the synthesis approach and summarizes all of
vented-box design in a table of 28 alignments. The sec-
ond part will apply the method and draw some very
pertinent conclusions about efficiency, driver Q, box vol-
ume, and amplifier output impedance.

The high point of this work is Table I which gives 28
alignments for vented-box loudspeakers. I have been so
impressed with this table that I have written a Fortran
program to quickly apply Thiele’s synthesis methods to
any loudspeaker with adequately known parameters. This
program and a run or two for typical woofers will be
published after Part II.

In considering this manuscript for republication, Thiele
has suggested that after 10 years his only change of atti-
tude would be to change the emphasis in Section XIV
(Part II). In contrast to the original preference for use
of a closed box (which is still quite valid), Thiele would
now emphasize the use of a vented box for measure-
ments. This is indeed a trifling matter and in concurring
with Thiele’s opinion, I can only add emphasis to how
well this paper has passed the test of time—it is just as
pertinent now as it was ten years ago.

J. R. Ashley

I. INTRODUCTION: The technique of using a vented
box to obtain adequate low-frequency response from a
loudspeaker has been known for many years. The prin-
ciple seems simple, yet the results obtained are variable.
Since comparatively cheap and reliable methods of acous-
tic measurement, especially at low frequencies, virtually
do not exist, the only check of results is the “listening
test.” The listening test is after all the final criterion of
the performance of an electroacoustic system, but as a
method of adjusting for optimum it is very poor indeed.
Quite apart from one’s prejudices and memories of pre-
vious “acceptable” equipments, the adjustment of a vented
box in ignorance of the loudspeaker parameters involves
two simultaneous adjustments, box tuning and amplifier
damping. And again there is a strong temptation to ad-
just the low-frequency response to something other than
flat to “balance” response errors at high frequencies,
when in fact the two problems should be tackled sepa-
rately.

For a long time it has seemed to the writer that the
methods of design of vented boxes were unsatisfactory,
leaving a number of questions unanswered.

1) What size of box should be chosen? Usually it
seems the larger the better, but how much better is a
large box and what penalty does one pay for a small box?
And for a given speaker, what is a “large” box or a
“small” box?

2) What amplifier damping should be used? In general

the answer is, the heavier the damping the bettep; though
with high-efficiency speakers this could cause’a loss of
low frequencies. But then again, negative damping is
sometimes used, especially in the United States. And
when vented enclosures often give excellent results, why
should they be known by some as “boom boxes”?

3) Is it advisable or necessary to use acoustic damping
to flatten the response? Some claim good results [1] while
others [2] warn against it. The general principle of flat-
tening response with parasitic resistance, and thus dis-
sipating hard-won power, seems wrong, especially in an
output stage and when a maximum bandwidth is sought.
The principle seems to apply equally to an amplifier—
loudspeaker—box combination and a video output stage.

4) To what frequency should the vent be tuned? The
conventional answer is to tune it to the loudspeaker
resonant frequency, but Beranek [3, p. 254] mentions that
“for a very large enclosure, it is permissible to tune the
port to a frequency below the loudspeaker resonance,”
while small boxes are sometimes tuned above loudspeaker
resonance.

5) What should be the area of the vent? The con-
ventional answer is to make it equal to the piston area
of the loudspeaker, but Novak [2] states that “it is per-
missible to use any value of vent area,” and again “the
vent area should not be allowed to be less than 4 in2.”
Again, should we use only a hole for the vent or should
we use a duct or tunnel?

6) If we equalize the amplifier to correct deficiencies
in the speaker and enclosure, what penalties result for
example in distortion? Can we trade amplifier size for
box size?

7) Assuming that we know how to design a box (and
associated amplifier) given the loudspeaker parameters,
how may the parameters be measured?

There are other questions that could be asked but the
seven above seem the most important; at any rate, they
are the ones that the present paper hopes to answer.

ll. DERIVATION OF BASIC THEORY

The theory of operation of loudspeakers in vented
boxes has been covered so many times in the literature
[3, pp. 208-258], [4] that it should be unnecessary to
repeat it here; therefore only sufficient of the theory will
be quoted to make the present approach intelligible.

This approach derives from Novak [2] to whom the
reader is referred, not only for his method, but for his
introductory paragraph . . . “Trade journals tell of ‘all
new enclosures, revolutionary concepts, and totally new
principles of acoustics’ when in reality there is a close
identity with . enclosure systems described long ago in
well-known classics on acoustics.” This should be framed
and hung on the audio engineer’s wall alongside Lord
Kelvin’s dictum. The present paper is the result of a dif-
ferent emphasis on, and interpretation of, Novak’s treat-
ment. It should be emphasized that, unless stated spe-
cifically otherwise, the results apply only to the “piston
range” of the speaker. This is the region where the cir-
cumference of the speaker is less than the wavelength of
radiated sound, i.e., below 400 Hz for a 12-inch speaker,
and below 1 kHz for a 5-inch speaker. The performance
of loudspeakers above the piston range is another subject
altogether.

We will be dealing later with a simplified equivalent
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Fig. 1. Complete (electromechanical) acoustical circuit of
loudspeaker in vented box (after Beranek [3]).

circuit, but first consider Fig. 1 in which the complete
equivalent circuit of the loudspeaker and enclosure is
given in acoustical terms.

We note that there are three possible equivalent cir-
cuits, electrical, mechanical, and acoustical. To convert
from electrical to mechanical units,

Z, = B2/Z, (1)

where
Z, celectrical impedance
Z,, equivalent mechanical impedance
B magnetic flux density in air gap
! length of wire in air gap.

Again to convert from mechanical to acoustic units,
Za = Zm/Sd2 (2)

where
Z, acoustical impedance
Sy equivalent piston area of diaphragm (usually
taken as area inside first corrugation).

Taking then in Fig. 1 the first impedance after the gen-
erator which is the acoustical equivalent of the electrical
resistance of the amplifier output impedance R, in series
with the voice coil resistance R,, we can see that the
various equivalents for this impedance are

Z,= R,+R, (3)
Z, = B22/(R,+R,) 4)
Z, = B2/S(R,+R,). (5)

E, open-circuit voltage of audio amplifier
M,; (= M,,/S;%) acoustic mass of diaphragm and
voice coil
mechanical mass as usually measured
Cqs accustic compliance of suspension
R,, acoustic resistance of suspension
R, acoustic radiation resistance for front side of
loudspeaker diaphragm
M,; acoustic radiation mass (air load) for front
side of loudspeaker diaphragm
M,, acoustic mass of air load on rear side of loud-
speaker
R,, acoustic resistance of box
C,s acoustic compliance of box
R,,e acoustic radiation resistance of vent
M,, acoustic radiation mass (air load) of vent
M,, acoustic mass of air in vent
R,, acoustic resistance of air in vent
U, volume velocity of cone
U, volume velocity of box
U, volume velocity of port, or vent.

The advantage of using this large complete equivalent
circuit in the first place is that the equivalent circuit of
the loudspeaker in a totally enclosed box may be shown
by removing the mesh representing the vent. To repre-
sent the speaker operated in an infinite baffle, C,; and
R,y are short-circuited. If the speaker is operated in open
air (unbaffled), the circuit is as in an infinite baffle, but
the values of R,,; and M,; are modified [see 4, Fig. 5.2].
The details of these circuits are very well covered in [3]
from which Fig. 1 and the accompanying symbols are
taken.

To make the circuit more manageable, we simplify it
to Fig. 2.

2|?
(Rg+Re)Sy Mas Cas Ros

EgB!
(Rg+Re)Sd

el

Fig. 2. Simplified acoustical circuit /5f loudspeaker in vented
box.

|

1) The three acoustic masses M4, M,;, and M,, are
lumped together to make a single mass M,,. However,
we must be careful to remember that this is an artifice.
M,, is not fixed, and some error results by assuming it
to be so. For example, the reduction of M,, and hence
of M,, when the speaker is tested in open air causes a
rise in resonant frequency, which must be accounted for
in measurements, as in Section XIV.

2) R, and R,,, are neglected in the equivalent circuit,
even though they are responsible for the acoustic output
of the loudspeaker. The whole essence of Novak’s theo-
retical model which makes a simple solution possible
is that a loudspeaker is a most inefficient device. In mea-
surements of fifty loudspeakers using the method of Sec-
tion XIV covering a wide range of sizes and qualities,
efficiencies ranged between 0.4% and 4% . For this reason,
the radiation resistances may be safely neglected. Since
radiation resistance varies with frequency squared, this
simplifies analysis considerably. For, as pointed out in [3,
p. 216], the radiation resistance of a loudspeaker in a
“medium-sized box (less than 8 ft3)” is approximately
the radiation impedance for a piston in the end of a long
tube. And the radiation resistance of the vent (or port)
is the same. Thus

Rarl = Rar2 = ﬂ'f2p,,/C (6)

where p, is the density of air and c is the velocity of sound
in air.

Note that the radiation resistance is independent of the
dimensions of the piston or vent. Note also that Eq. (6)
is an approximation which is accurate only in the piston
range of the loudspeaker (compare [3, Fig. 5.7] or [4,
Fig. 5.2]).

3) My, and M,, are lumped together as M,,, the total
air mass of the vent.

4) R, and R, are neglected since for most practical
purposes their Q is very high compared with that of the
loudspeaker, especially when its damping is properly con-
trolled by the amplifier.

For example, it will be shown later that the Q of speak-
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Fig. 3. Simplified mechanical circuit of loudspeaker in
vented box.
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er plus amplifier for a vented box will usually lic between
0.3 and 0.5. The Q of the vent, on the other hand, can be
found by combining [3, Egs. (5.54) and (5.55)] to give

0, = oM,/ Ry = (S,// ) ¥V +1.70a)/ (P +2a)  (7)

where
Q, effective Q of vent
S, area of vent (assumed to have constant cross
section)
I actual length of vent
a effective radius of vent
p  kinematic coefficient of viscosity; for air at
NTP, u = 1.56 X 10—5 m2/s.

Thus if $, = 4 in2, the bottom limit specified by No-
vak, and f = 25 Hz, then Q, = 64.

Since thesc are the smallest values of S, and f likely to
be found in practice, it is clear that little error will result
from this source, and this is confirmed in Section XI. In
the preceding discussion, the effect of M., and R, has
been neglected, but in no case investigated has the total
Q. fallen below 30.

5) As a result of measurements of fifty loudspeakers,
it appears that the Q, of the speaker due to R, lies usual-
ly between 3 and 10, so that this does not affect matters
greatly, but since R,; can be lumped with the equivalent
electrical resistance (see Eq. (8)) and because it has some
importance in the loudspeaker measurements of Section
X1V, it is included in Fig. 2

The mechanical equivalent circuit (Fig. 3) is derived
from Fig. 2 by multiplying all the acoustical impedances
by the conversion factor S;2 as in Eq. (2). Thus these
impedances represent the mechanical impedances at the
loudspeaker diaphragm due to the whole acoustical—
mechanical circuit. Since the conversion is obtained by
multiplying by a constant, the form of the circuit remains
the same. However, when the conversion is made from
Fig. 3 to Fig. 4, the electrical equivalent circuit, it can
be seen from Eq. (1) that an impedance inversion
takes place. Thus all series elements become parallel
elements, inductances become capacitances, and vice
versa. Thus L., is the electrical inductance due to the
compliance of the loudspeaker suspension, C,,, is the
electrical capacitance due to the mass of the loudspeaker
cone, C,,., is the electrical capacitance due to the mass
of the vent, and L., is the electrical inductance due to
the compliance of the box. In Fig. 4 an additional pair of
circuit elements which were neglected in the earlier cir-
cuits have been added within the dashed lines. These
are the inductance and shunt resistance (largely due to
eddy current loss in the pole piece and front plate) of
the voice coil.

It is hoped that this will not cause confusion. These
elements contribute very small effects at the low fre-
quencies we are considering, but show the reason for the

Cmev

Lceb

Fig. 4. Simplified electrical circuit of loudspeaker in vented
box.

shape of the resulting electrical impedance curve of
Fig. 5 above f,. However, this will be of greater impor-
tance when we come to testing procedures in Section XIV.

1ll. DERIVATION OF RESPONSE CURVE

The expression for the frequency response of the sys-
tem is obtained by analysing the circuit of Fig. 2. To
simplify the expression, we lump all the series resistance
into a total acoustic resistance,

at — Ras+ [3212/(Rg+Re)Sd2]' (8)

Now we have seen already that the radiation resistances
of speaker and vent must always be the same. And since
the radiated sound depends on the sum of the volume
velocities U, and U, (or rather their difference, since U,
derives from the back pressure of the speaker), then the
acoustic power output is —— T

W = NU(‘—Up!QR r1 %)

while the nominal electrical inpyt power is

W, = E2R,/(R,+R)% (10)
Thus the efficiency is
n = Wao/Wei
= [lUc_Upl2Rar1(Rg+R0)2]/(E!12Re)' (11)
Analyzing the circuit, we find that
(U.—U,)/[E,BI/Se(R,+R;)] = 1/pM , X
p4MasM(wCasCab
M M Cab+p MaDCaQCQbRat
+p2(M,C, + aCas T MyCap) T PCo Ry +1
(12)

To make the expression easier to manage we write
E(p) for the expression inside the square bracket on the
right-hand side which is a fourth-order high-pass filtering
function. Also if jo is written for p, the steady-state re-
sponse E(jw) is found. We also convert pM,, from the
operational form to the steady-state form joM,,, and then

substitute
M, = M,S42. (13)

This puts the expression for mass into a more intelligi-

§ fe f'., £ F‘n

FREQUENCY —

Fig. 5. Typical impedance curve of loudspeaker in vented
box.
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ble form, but it is emphasized that the total loudspeaker
mechanical mass M, includes not only the mass of the
cone plus voice coil, but also the mechanical equivalent
of the acoustic air load. The latter is only a small part
of the total, but varies with the speaker’s environment,
€.g., box volume [3]. Thus if we substitute Eqgs. (6), (12),
and (13) in Eq. (11),

1 = p,B2PS*|E(jw) [2/4ncR M, 2 (14)
or

0 = (p,/4wc) (B22S,2/R M, ) |[EGw) 2. (15)

Thus the expression for efficiency contains three parts:
1) a constant part containing physical constants,

2) a constant part containing speaker parameters,

3) a part |[E(jw)|? which varies with frequency.

IV. CONTROLLING THE FREQUENCY
RESPONSE

The problem of greatest interest is the control of fre-
quency response; so we consider first (3), [E(jo)|2, or
preferably its operational form E(p). To make this easier
to manage we substitute in E(p) of Eq. (12)

T82= (1/“’8)2:Mascas (16)
Tb2 = (l/wh)2 = M(wcab (17)
Qt = (Mas/cas)%/Rat (18)

where o, is the resonant frequency. wy is the box resonant
frequency, or more exactly, the frequency at which the
acoustic mass of the vent resonates with the acoustic ca-
pacitance of the box. It should not be confused, as is
often done, with f, or f, of Fig. 5, which are by-products
of f, and f, (see Eqgs. (105) and (106)).

Q, is the total O of the loudspeaker when connected to
its amplifier. The acoustic resistance in the loudspeaker
R,, has a small effect, but usually the resistances reflected
from the loudspeaker resistance R, and the amplifier R,
contribute the greater part of Q,. Then E(p) of Eq. (12)
becomes

E(p) =
p*T,2T 2

pT 3T+ p* (T T, /0Qy)
+p2 [ TI)2 + T,s'2 + szcus//cah] +p( TS/QI) + 1

(19)

For many purposes this is more conveniently written as

E(p) = 1/{1+1/pQ, T+
( 1/[)2) []/T7)2+1/Ts2+C(1~,/Cast2]

+1/p3T 2T+ 1/pA T2 T2).  (20)

This expression corresponds to Novak’s expression for
the modulus in his Eq. (15) which is simplified into his
Eq. (16). (Note that in the captions for his Figs. 7, 9, 11,
12, and 13, a positive sign is wrongly substituted for a
negative sign).

As stated before, this is a fourth-order high-pass func-
tion, that is, it has an asymptotic slope in the attenuation
band of 24 dB per octave, and can be written in the gen-
eral form

E(p) = 1/{1+x,/pTy+x,/p*T¢?
+x3/03T*+ 1/P4T04} (21)

which is defined by a time constant T, (= 1/w, the

nominal cutoff frequency) and three coefficients x;, x,, x3
which determine the shape of the response curve. In fact,
the general expression is often written with a constant
xo and x, instead of the two unity coefficients in the
denominator of Eq. (21); but the expression can always
be reduced to the form of Eq. (21) by division of the
whole expression by a constant, and suitable adjustment
of T, and the x coefficients. Considering Eq. (20) now
from the viewpoint of what can be done with a given
speaker, the parameters C,, and T, are fixed. Thus there
are three variables Q,;, T;, and C,;,, and it is possible to
achieve any desired shape of curve (i.e., any desired com-
bination of the three x coefficients); but in doing so T, is
determined (see Eq. (27)).

For identity between the two Eqs. (20) and (21}, the
coefficients of the various powers of p must be identical,
that is,

x1/To = 1/04T; (22)
xo/To?> = 1/T?+1/T3F+Cpy /Cp T2 (23)
X3/ To® = 1/Q,T,%T, (24)
1/Ty* = 1/T,2T 2. (25)
From these, the relationships can be established
T,/T, = x1/x; (26)
To/Ts = (x1/x3)% 27
Q= 1/(x1x3) % (28)
Cas/ca,b = (x1x'_'x3_x32—x12)/x12- (29)

The Hurwitz criteria
defined by Eq. (21) are

1) all the x coefficients are positive,

2) xyxoxy—x32—x42 is positive.

If (1) and (2) are true, then all the parameters deter-
mined by the four Eqgs. (26)—(29) are positive and there-
fore realizable. Thus we have in the four equations a set
of simple relationships which enable us to achieve, for
any speaker, any shape of low-frequency cutoft (fourth-
order) characteristic. The only requirement is that we
have sufficient freedom to choose a suitable box resonant
frequency 1/T;, box volume C,;, and total Q of speaker
plus amplifier Q,, and can accept the resulting value of T,.

The first parameter T, presents no practical difficulty;
the second, C,;, can cause trouble if space is limited, but
in this case, as shown in Section VII, we can work back-
ward and choose a suitable response characteristic to suit
the box size; the third, Q,, is controlled by the source
impedance of the amplifier. If the required Q; is greater
than the speaker’s natural Q, a positive output impedance
will be required of the amplifier and this can be controlled
by the usual negative feedback techniques. If less, a nega-
tive output impedance will be required, and this can be
achieved by applying feedback from a separate winding
on the voice coil, or by a combination of positive current
and negative voltage feedback. There is a practical limit
here if the degree of negative impedance required is too
large, but this will be discussed in Section XII.

[5] for stability of a network

V. \SOME PRACTICAL RESPONSE CURVE
APES

Fourth:Order Butterworth Response

Armed:\with Egs. (26)—(29) we can calculate the pa-
rameters required for different response characteristics.
The mos;' obvious one to try first is the fourth-order

///
/
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maximally flat (Butterworth)! characteristic for which

|E(jo)| = 1/[14 (w,/w)®]% (30)
or
|E(jm)]'~’ = 1/[1+(w,/0)¢] (31)
and, in the operational form,
E(p) = 1/(1+2.613/pT,+3.414/pT,2
+2.613/p3T,*+1/p*T,*). (32)

Note that in Eq. (31) and others which will follow, the
ratio of any two frequencies, say o,/w;, is identical to
f./f» Note also that all Butterworth responses are 3 dB
down when o = w,, i.e., 0T, = 1.

A characteristic of Butterworth responses, though not
peculiar to them, which simplifies calculations even fur-
ther is that in all cases

X, = Xj. (33)

Thus in this class or response,
T, =T, (34)
T,=T, (35)
Q.= 1/x (36)
Coo/Cap = X2 2. (37)

Thus in the fourth-order case where
X, = x3 = 2.613 (38)
Xy = 3414 (39)
we have

Q, = 0.383 (40)
C,./Cup = 1.414. (41)

This is alignment no. 5 of Table 1. The term “alignment”
seems appropriate since the problem is similar to the
choice of alignments for other filters, e.g., RF and IF
amplifiers. This is obviously the conventional type of
box alignment, for the box frequency f, is identical with
the speaker resonant frequency f,, and also the frequency
f3 with which the response is —3 dB. Note that because
of the rapid change of attenuation the response is only
—0.9 dB at 1.2f,. -

However, it also shows that a Maximally flat
characteristic is obtained only if the correct values of
box size C,, and especially Q, are chosen also. It is easy
to show from Eq. (20) that in any alignment, at the
upper resonant frequency (f, of Fig. 5), the response is

E(jo) = j(Quuy/ws) /[1— (@p2/w2) ] (42)

that is, the response varies directly with Q,. Also at the
box resonant frequency, f,

E(]w) = (Cub/Cas) (wbg/wsg) (43)

that is, the response is independent of Q,. (The response
at f; is similar to Eq. (42) when o, is replaced by «; but
as this is in the attenuation band, it is less important.)
Thus if Q, is twice the optimum value, there will be a
response peak 6 dB high. Now as a general rule a speaker
with a @ of about 0.4, as required in this case, is usually
of high quality.

A Q of 0.8 is typical of a medium quality speaker and
a Q of 1.6 is typical of a low (“popular” or “skimped-
magnet”) quality speaker. Thus these speakers would

1 Hence the expression Butterworth box. However, in spite

of the phonetic similarity, butter boxes are not in general
suitable as loudspeaker enclosures.

have response peaks (at 1.76w, in this case) of 6 dB and
12 dB, respectively, if fed from a zero output impedance
amplifier, 12 dB and 18 dB if fed from an amplifier with
impedance equal to loudspeaker resistance R, (e.g., pen-
tode with 6-dB negative voltage feedback), and even
more with higher amplifier impedances. Hence the ex-
pression “boom box.”

An amplifier with negative output impedance half that
of the loudspeaker resistance R,, a quite feasible figure,
would correct the medium quality speaker, and reduce
the peak on the cheaper one to 6 dB. An amplifier with
a negative output impedance three quarters of R, to
correct the cheaper speaker, is possible but would need
care in respect of stability (see Section XII).

Fifth-Order Butterworth Response

This has the characteristic

|EGeo)|* = 1/[1+ (0,/0)°]. (44)
The operational form can be factorized to
E(p) = 1/[(1+1/pT,) (1+~/5/pT,
+3/P T2 VI/PTSHPT,N] (45)

which is the characteristic of two filters in cascade: 1) a
first-order filter which can be provided by a CR network
with a time constant T, and 2) a fourth-order filter pro-
vided by a loudspeaker and box for which

T,=T,=T, (46)
0, = 0.447 47)
Cus/Cop = 1. (48)

The alignment, no. 10 of Table I, has the advantage if
the extra box size can be tolerated (a smaller value of
C,s/C,, means a larger box) that a maximally flat re-
sponse can be obtained down to the loudspeaker resonant
frequency, while at the same time, a very simple “rumble”
filter tapers off the input to the amplifier in the attenu-
band. This helps the amplifier, but more importantly it
greatly reduces the maximum flux density in the output
transformer and also the maximum excursion of the loud-
speaker (see Section X and Fig. 10).

Sixth-Order Butterworth Response

This has the characteristic

[E(jo)[* = 1/[14 (w,/w)'?] (49)
while the operational form may be factorized to
E(p) = 1/[(14+1.932/pT,+1/p*T2)
(1+1.414/pT,+1/pT,?)
(140.518/pT,+1/p*T,2)]. (50)

As in the previous case, the overall alignment is
achieved by providing one factor with an external filter,
in this case second order, and making the fourth-order
response of the loudspeaker plus box the product of the
two remaining factors. Thus we can obtain the identical
response in three different ways. These are listed in
Table I as alignments no. 15, 20, and 26, the three sepa-
rate classes depending on whether the auxiliary electrical
circuit has the lowest, middle, or highest x value of the
three factors in the alignment. Not only do the three align-
ments produce the same response, but as shown later
(Section X and Fig. 10) the cone excursions are identical.
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Table I. Summary of loudspeaker alignments.
This illustrates a general principle that box size can where
be exchanged for amplifier power. The only additional y=x2—2 (53)

penalties are as follows:
1) additional heating of the voice coil by signals in
the region of the cutoff frequency, and
2) the requirement of a smaller value of Q, as the box
volume is decreased.
The performance required of the auxiliary filtering is
given in the last four columns of Table I, whose terms
are jllustrated in Fig. 6. Instead of the parameter x in the
expression
E(p) = 1/(1+=x/pT,+1/p?T,?) (51)
the response shapes are defined in Table I by the parame-
ter y in the expression

IE(jw)|2 = 1/[1+y(mo/w)2+(wo/w)4] (52)

as given in a previous paper [6]. When y is zero or posi-
tive there is no peak in the response as shown in Fig. 6,
but when y is negative there is a peak whose frequency
and amplitude are given in Table I. The amplitude of
response at the nominal cutoff frequency f,,, of this
auxiliary filter is given by

|EGo)| = 1/(2+y)% (54)

Chebyshev Responses

If the real values of the poles of a Butterworth func-
tion are all multiplied by the same factor k, which is less
than one, a Chebyshev or “equal ripple” function results
[7]. Chebyshev filters are characterized by a flat response
in the passband except for ripples which are equal in
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amplitude, (sce curve 8 of Fig. 8). Beyond cutoff, the
response falls at a rate whose maximum is greater than
the asymptotic slope. Typical values are tabulated in
Table I with the type names Cy4, Cs, and Cg representing
Chebyshev responses of fourth, fifth, and sixth order. It
will be seen from the table that a considerable change in

_alignment occurs before the ripples become serious in

magnitude. For our purpose here, the Chebyshev re-
sponses provide a means of carrying the useful response
of the speaker plus box combination well below the
speaker resonant frequency f, (which is also cutoff fre-
quency f, in the Butterworth cases). This is done by
tuning the box to below f,, but not as low as the cutoff
frequency (defined here as f;, the frequency where the
response is 3 dB down). The box size C,, is increased,
and to some extent, so is Q.

The increase in useful low-frequency response is con-
siderable. In alignment no. 9, a response down to 0.6f, is
obtainable without amplifier assistance, if a ripple of
1.8 dB can be tolerated. In alignment no. 25, where a
maximum lift of 6 dB is required from the amplifier be-
fore its response falls off, a flat response can be obtained
down to nearly 0.4f,.

e
Y NEGATIVE -

T ASYMPTOTE

1298 PER
CTAVE

QuUTRPUT o

y POSITIVE

Founf o FREQUENCY -

Fig. 6. Typical curves for second-order auxiliary filter,
illustrating terms used in Table I.

Quasi-Butterworth Third-Order Responses

This long name disguises a class of responses charac-
terized by

[EGe) [* = 1/[1+y3(w,/0) 0+ y4(w,/0) 8]

that is, in the expression for the modulus of the fourth-
order filter, there are zero coefficients for the second and
fourth powers of frequency, with nonzero coefficients
for both the eighth and sixth powers. This type of re-
sponse yields a series of alignments, nos. 1-4 of Table I,
in which the cutoff frequency (again defined here as the
frequency f; where the response is 3 dB down) is above
the speaker resonant frequency. So also is the box reso-
nant frequency, but again, not to the same extent. As
the cutoff frequency is made higher, these alignments
require smaller box volumes, and lower values of Q,.

(55)

VI. GENERAL DISCUSSION OF TABLE |

It will be seen that alignments no. 1-9 provide a means
of varying the cutoff frequency of a loudspeaker—box
combination over a wide range. The last two columns
for these alignments illustrate two interesting properties
which remain substantially constant (==5%) over this
wide range.

1) The expression C,,f2/Cy,fs2 is substantially con-
stant around 1.41. This means that if a given speaker for

which Cy, and f, are constant is placed in different boxes
to provide different cutoff frequencies, the box volume
will vary with inverse frequency squared. This illustrates
a fact long known to designers of vented boxes, but
rather blurred by the exponents of ‘“revolutionary new
concepts,” that the bigger the box, the better the low-
frequency response. It is also interesting to note that

Coofs? = 1/47°M,, = S32/4n2M,,, == 1.41C,,fs2  (56)
that is, for a given cutoff frequency of the combination,
the box size varies with the square of diaphragm area
S42 and inversely with M, .. In other words, if the mass
of the loudspeaker M, is fixed and the compliance C,,
is varied to give a different resonant frequency f,, then
the box volume Cg; for a given cutoff frequency f, re-
mains substantially constant. To this extent, and also in
the expression for efficiency (Eq. (66)) the compliance
of the loudspeaker is unimportant.

2) Q.fy/f, lies around 0.38. If Eq. (18) is rewritten as

Qt = “’sMas/Rat (57)

then the expression above becomes w,M,,/R,, which can
be thought of as the total O of the speaker at the box
resonant frequency. This remains nearly constant through-
out alignments no. 1-9.

Certain alignments, no. 13, 14, and 27 with no. 12 as
a borderline case, which require auxiliary filtering with
large attenuation at the cutoff frequency of the whole
system, must be considered suspect, since they postulate
high acoustic efficiencies in the region of cutoff. Remem-
ber that the basis of the theory is that the overall efficiency
is low. In the borderline case, no. 12 for example, the
peak efficiency will be just above cutofl frequency and
will be approximately 2.52 times the loudspeaker effi-
ciency. If the loudspeaker is 4% efficient, this means a
maximum overall efficiency of 25%. Around this point,
the basic assumptions will become inaccurate, especially
if resistive losses in the box are large.

Similarly, for reasons of cone excursion (considered
in Section X), alignments with smaller values of f;/f,
such as nos. 17-19 should be avoided if possible. These
particular alignments which do give good low-frequency
responses in small box volumes would probably be un-
popular anyway since they make such great demands on
amplifier output in the region of cutoff.

Alignment no. 28 is interesting in that it represents the
result of “pure” bass lift. In the other alignments which
use “amplifier aiding,” the response often rises near cut-
off, but always falls off ultimately at lower frequencies
at a rate of 6 or 12 dB per octave. In this way, although
increased amplifier output may be required over a com-
paratively narrow range of frequencies, a greatly de-
creased output, and with it, a greatly decreased cone ex-
cursion, is required at the lower frequencies. But in align-
ment no. 28, a simple low-frequency lift of 6 dB, such as
results from a network with two resistors and a capacitor,
is required. The mean frequency of lift (at which the lift
is 3 dB) is 1.08f;. However, since the maximum lift con-
tinues to the lowest frequencies, the amplifier would be
more likely to cause intermodulation distortion with
“rumble” components. However it does give some de-
crease of box volume compared with alignment no. 5.

It should be emphasized that these alignments are by
no means the only ones possible. They have been chosen
as the ones most likely to be useful and as showing the
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Fig. 7. f+/fv (dashed curves) and C../C., (solid curves)
versus fs/f.. a. For design of medium and large boxes; align-
ment types B.—C., B:~C;, and B—C, class II and IIL. b. For
design of small boxes; alignment types OB+~B, and B+~C,
class I.

trend of results. If more sophisticated filtering in the
amplifier is possible, the choice widens greatly, e.g.,
there are six alignments for the eighth-order Butterworth
response, each with jts fourth-order amplifier filter and
the ratios C,./C,, of 0.518, 0.681, 1.000, 1.316, 1.932,
and 2.543.

Another possibility would be the use, instead of the
“quasi-Butterworth” responses, of “sub-Chebyshev” re-
sponses, i.e., response functions derived by multiplying
the real coordinates of the Butterworth poles by a con-
stant k which is greater than 1.

In answer to the question proposed in 1) of Section
I—What is a large box?—it would appear that a medium
sized box would be one for which V, is about the same
value as V,,, say C,./C,, lies between 1 and 1.414. For
large boxes, C,,/C,, is less than 1, for small boxes C,./
C.p is greater than 1.414. Table I shows that smaller
boxes demand a smaller value of Q,. Thus if Q, is not
properly controlled, the smaller boxes will tend to cause
a greater peak at f,, while larger boxes will cause the
peak to diminish. Fig. 7 is plotted from the points of
Table I. Typical response curves for alignments no. 3, 5,
and 8 are given in Fig. 8.

Vil. TO DESIGN A BOX FOR A GIVEN
LOUDSPEAKER

First, the following three loudspeaker parameters must
be known: 1) the resonant frequency f,, 2) the Q values
Q, and Q,, the latter being usually the controlling fac-
tor. This is discussed in more detail in Section IX, Egs.
(71) and (72), and 3) the acoustic compliance C,,. This
is expressed most conveniently as V,,, the volume of air

whose acoustic compliance is equal to that of the speaker.
Since in general the acoustic compliance, from [3, Eq.
(5.38)1 is given by

C = V/pyet (58)

then

C(N/Ca,b = V(ls/Vh (59)

where V), is the volume of the box.

The design is commenced in one of two ways:

1) If the box size is limited, V, is taken as the assigned
value. Remember this is the net volume, and that the
bracing and the volume displaced by the loudspeaker and
the vent (say 10%) must be subtracted from the gross
volume. From this value and the known value of Ve
the ratio C,./C,, is found, and thence either from Fig. 7
or interpolation from Table I, the values of fs/fe s/
and Q,. Hence f, and f, are found.

2) If a certain frequency response is requircd, then fa
is the starting point. The ratio f,/f, is found, then from
Fig. 7, or by interpolation from Table I, f,/f,, Cos/Cons
and Q,. Hence f, and V, are found.

The choice of alignment will depend largely on what
can be done with the amplifier circuits. For a straightfor-
ward amplifier with no filtering, alignments no. 1-9 would
be chosen. If a slightly larger box is possible, alignments
no. 10 and 11, with their simple CR input filtering make it
possible to ease the power handling requirements of both
speaker and amplifier. If a more sophisticated design of
input filtering is possible as described in Sections V and
XTI, alignments 15-17 can be used to obtain good acoustic
output from small boxes at the expense of higher electrical
power output from the amplifier, while alignments no.
20-25 are the most suitable if a fair sized box is available
and only moderate lift is required from the amplifier,
although in all the fifth- and sixth-order cases, the power
required from the amplifier and the excursion demanded
of the speaker decrease rapidly below cutoff.

Having found f, and V,, the vent dimensions may be
found using the methods of the standard texts [8). How-
ever, the following adaptation of the method has proven
useful for calculation. The standard form is

V), = 1.84 X 108S, /w,2L, (60)

where S, is the cross-sectional area of the vent, in square
inches, and L, is the effective length of the vent, in inches,
which includes its actual length together with an end
correction.

+2
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Fig. 8. Typical response curves for identical loudspeakers,
but different box sizes. Cos/Car = 0.56, 1.41, and 4.46, cor-
responding to alignments no. 8, 5, and 3 (types C,, B,, and
OB;) of Table 1.
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This is written more conveniently as

L,/S, = 1.84 X 108/w,2V,,. (61)

The quantity L,/S,, which has the dimension of inches—1,
is equivalent to an inductance (acoustic mass) which
resonates at », with a capacitance (acoustic compliance)
equivalent to V,. When L,/S, is found, a value is
chosen for the vent area §,. It has been shown already
in connection with Eq. (6) that the radiation resistance,
and therefore the operation of the vented box, is in-
dependent of the value of §,. Now it is usually stated
that S, should normally be the same as the effective
radiating area of the cone [8], i.e., S;. However, this will
often involve an excessive length of vent, especially in
small boxes and at low cutoff frequencies, because, since
L,/S, is fixed, the volume L,S, displaced by the vent
varies as S,2. At the same time, a small amount of
distortion is generated in the vent (see [4, Eq. 6.33])
which is a maximum near the box resonant frequency w,
and is proportional to L,. On the other hand, Novak [2]
quotes 4 in2 as the lower unit.2 As shown before, a
small area vent has still a high value of Q. However,
it will also have higher alternating velocities of air, and
this will limit the amount of acoustic power that can be
handled linearly. The only advice that can be given is
to design the vent area as large as possible in the particu-
lar circumstances, up to a limit equal to the piston area.

The maximum length of L, is usually quoted as \/12
where A is the wavelength of sound at the loudspeaker
resonant frequency f.. The actual requirement is that
the vent, which is essentially a transmission line, should
look like a Iumped constant mass at all the frequencies
for which the box is effective. That is, it must still be
rather shorter than A /4 at frequencies somewhat above f,
of Fig. 5. The value of f, with respect to f, will depend
on the box tuning. But it also varies with C,,/C,;,; with
a smaller box, f, is higher.

With the chosen area of vent, first calculate the part
of L,/S, due to the end correction. This length L” is
usually quoted as

L” = 1.70R (62)
where R is the effective radius of the vent, i.e.,
(L,/Sy) ena = 0.958/~/5,,. (63)

This applies to pipes with both ends flanged. When a
free-standing pipe is used, the end correction is
L” = 1.46R (64)

and
(L./Sy) ena = 0.823/7/5,. (65)
In a pipe the end correction is not usually a large part
of L,/S,. It forms the larger part when the vent is a
simple hole in the front panel and then Eq. (63) is correct.
A method favored by the writer, if styling permits, is
to build a shelf into the bottom of the box as in Fig. 9,
with a spacing ! from the back panel equal to the height

2 This is presumably for the particular case he considers
where f, is 25 Hz, and the acoustic output power is high. For
a higher box resonant frequency and/or lower power, an even
smaller vent area seems permissible.

Fig. 9. Simple method of making a tunnel or duct.

of the opening in the front panel. In this case, the effec-
tive length of the tunnel is the box depth d plus the end
correction as given by Eq. (62) and allowances for
thickness of lumber. This vent is tuned by varying L

When (L,/S.)q is found, it is subtracted from the
required value of L,/S,, and from this, the actual length
L,’ is calculated. If this value is unsuitable, another value
of §, is tried and so on (see Appendix).

With regard to box dimensions, it is desirable to take
all precautions to prevent strong standing waves. If a
corner box is made, the problem is usually fairly easy to
solve since the box sides are splayed at least in two dimen-
sions. If a rectangular box is made, and if styling allows,
the inside dimensions should be in the preferred ratio
for small rooms, that is, 0.8:1.0:1.25 or 0.6:1.0:1.6. In
any case, the speaker should be mounted away from the
center of the front panel.

The need for sound sealing, with good glued joints,
adequate bracing, and adequate damping of the internal
surfaces has been stressed often before, so no more need
be said of it here. The same is true for the improvement
in performance that is obtained by placing the box in the
corner of the room, and also by building the sides of the
box right down to the floor. However, this last does not
seem to be realized sufficiently and the current fad for
mounting all furniture on legs causes much unnecessary
loss of performance in loudspeaker boxes.

Finally the value of Q, required by the alignment is
compared with the values Q, and Q, available, and suit-
able adjustments are made to the amplifier to achieve a
correct overall Q,. This is dealt with in Section XII, and
a worked example is given in the Appendix.
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Loudspeakers in Vented Boxes: Part II*

A. N. THIELE

Australian Broadcasting Commission, Sydney, N.S.W. 2001, Australia

Editor’s Note: Part 1 of Loudspeakers in Vented Boxes
was published in the May, 1971 issue of the Journal.

Vill. LOUDSPEAKER EFFICIENCY

In Eq. (12) an expression was derived for the efficiency
of a loudspeaker in a box, which consists of three parts.
We have considered, in the meantime, the third part
which varies with frequency. We now consider the first
two parts. Thus the basic efficiency

Moy = (po/4mC) (BEPS;?/R M?,,5). (66)

If this experience is compared with Beranek’s Eq.
(7.19) it will be seen to give one quarter of his value,
after the differences in notation are allowed for.

1) Multiplication by 100 to give percentage.

2) The definition of “nominal input power” in Eg.
(10) of this paper as the power delivered by the ampli-
fier into the nominal speaker impedance R,3. Beranek’s
treatment is based on the idea of maximum power trans-
fer when the load impedance is equal to the generator
impedance, as in his Eq. (7.14). If this condition, R, =
R,, is substituted in his Eq. (7.19), one of the conditions
for agreement with Eq. (66) is satisfied. However, in
dealing with the output power from an amplifier, the
writer prefers to consider the power delivered into the
load without regard to the output impedance R,, for the

3 The nominal impedance of a loudspeaker is usually taken
as the minimum impedance at mid-frequencies, at f, in Fig. 5.
This is a little greater than R.; but for simplicity, and it is
hoped without too much confusion, the nominal impedance is
taken here as R,.

* Reprinted from Proceedings of the IRE Australia, vol.

22, pp. 487-508 (Aug. 1961). For Part I see J. Audio Eng.
Soc., vol. 19, pp. 382-392 (May 1971).

relationship of R, to the optimum load impedance depends
in the first place on the nature of the output device,
transistor, pentode, or triode. Furthermore, R, can be
manipulated by feedback techniques (see Section XII)
to almost any desired value without affecting the condi-
tion for optimum output power. Hence the treatment in
this paper.

3) The lumping in this paper of all mechanical mass
into M,,,.

The additional multiplication factor of one quarter
arises from the following.

4) Beranek’s figure being for the radiation from both
sides of the diaphragm, giving twice the output from one
side.

5) The assumption in this paper that the radiation
resistance in a box is that of a piston at the end of a
long tube [3, p. 216]. This radiation resistance is one half
of that of a piston in an infinite baffle.

Thus the results are consistent. We will continue here
to use 7,3, unless stated otherwise. But it is important to
define efficiency in terms of actual use and to remember
that the value of 7,,, being the basic efficiency in a box,
is one half the efficiency on an infinite baffle and one
quarter of the efficiency, if radiation from both the front
and back of a speaker in an infinite baffle is considered.

To simplify the understanding of Eq. (66), we make a
further substitution. It can be shown that

I2/R, =V, /2a (67)
where o is the resistivity of the conductor and V,, is
the volume of the conductor assumed to be completely
within the air gap. In so far as the conductor overlaps
the air gap a correction factor would be applied. Then
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Eq. (66) becomes

Nob = (p0/87r6‘0') (sttlecu/Mznzs) (68)

that is, once the voice coil conductor material, and there-
fore o, is chosen, the loudspeaker efficiency depends
on the four parameters in the second bracket. Without
digressing too far into the problem of loudspeaker design,
it is noted that this shows the two basic questions in
loudspeaker design for good efficiency at low frequencies.

1) How to make the product B*V,, a maximum for a
given magnet, since the larger V,, is made, the wider
and/or deeper is the air gap, and hence the lower is B.

2) How to make $,2/M,,.2 a maximum, since the
larger the area the greater the mass for a given cone
thickness. If thickness is reduced, break-up problems
increase due to nonlinearity of the piston drive. In con-
ventional designs the mass of the voice coil is small (less
than 20% ) compared with the mass of the cone, so there
is little interaction between V. and M,,,.

The writer prefers to express efficiency as an electro-
acoustic conversion loss

dB(’n =10 ]0g10 n- (69)

For example, 1% efficiency is equivalent to 20-dB electro-
acoustic conversion loss. This facilitates comparisons
between different designs and estimations of the acoustic
level (in phons) which a speaker will provide with a
given amplifier and listening room (see Appendix).

IX. RELATIONSHIP OF EFFICIENCY 1+, Q,
AND BOX VOLUME

First we take Eq. (57) and break Q, into two com-
ponent parts, one due to the acoustic resistances and the
other due to electrical damping, so that

1/Q: = 1/Q,+(1/Q) [R./(R,+R.)].  (70)

Then from Eqs. (8) and (57), the acoustic Q of the
loudspeaker

Qa = wsMns/Rax (71)
and the electrical Q of the loudspeaker
Qv = wfol.s'Rt'S(I‘l/Bg[? (72)
ie.,
Qr‘ = ZU‘wxM,,,R/B.‘)V(.". (73)

Again if we consider the approximate relationship
established in Table I that

Clwfxz/cabft%z = \/-2—. (74)

thus, converting the acoustic compliance of the box into
the equivalent volume of air, the box volume

Vb == (P4;C2/“’32 \/—2—) (Stig/Mnm) (75)

remembering that this approximate relationship holds only
in the absence of amplifier assistance.

Now considering together Eqgs. (68), (73), and (75),
the following points emerge.

1) The same considerations that ensure high efficiency
also ensure a low Q,, except that Q, is independent of the
projected piston area S, and depends only on the first
power of the cone mass M,,, instead of the second power.

2) The box volume depends, apart from the choice of

cutoff frequency f,, only on §,* and M,,.. Reduction of

box volume by reduction of §, involves an increased
cone excursion, which is inversely proportional to S,
and ,? for a given acoustic power. If the box volume
is reduced by increasing M,,., n is decreased éven more
(see Eq. (68)), necessitating increased amplifier power.
It would seem that the well-known R-J enclosure works
this way. The opening in front of the cone is restricted,
and this increases the air mass loading M,, of Fig. 1
in the same manner as a vent. Thus M, is increased and
the box volume V,, ie., C,, for a given low-frequency
cutoff is reduced, but at the price of reduced efficiency
throughout the piston range.

3) The best way of increasing »n and lowering Q. is
to increase the flux density B. But if one starts with a
reasonably high value of B in the first place, the cost of
obtaining an extra decibel of efficiency increases rapidly.
So again to obtain a given amount of acoustic power at
a given price, a compromise must be struck between the
sizes of magnet, box, and amplifier. However, this dis-
cussion does show the reason for the large magnet, long
throw, heavy cone designs used overseas in small “book-
shelf boxes.”

Note that Q, in Eq. (71) depends only on acoustic
reactance and resistance, that is, Q, is independent of B.

Substituting Egs. (58) and (73) in (68), we obtain the
interesting relationship

Noh — "-’x:;V(m/47rc:{Q4’ (76)

where V. is the volume of air equivalent to the acoustic
compliance of the loudspeaker, or

Tor = 8.0X 10-12f 3V, /O, (77

where V,, is in cubic inches. Thus the basic efficiency of
the speaker can be calculated from the three parameters
which are used for the design of the box. A physical
explanation of the variation of n and Q, is given at the
end of Section XII.

X. EXCURSION OF LOUDSPEAKER CONE
In the derivation of Eq. (12) it was found that
U(./(U(.—" Up) =1- l/szarCab
= 1—(w,/0)2

Thus the acoustic output power radiated by the cone
alone is

(78)

Waoe = Wemop[1 = (w,/0) ]2 E(jo) | (79)
Now starting from the relationship
Waioe = (R,,05%)10~7 (80)

which is [4, Eq. 6.13], where R,,, is the mechanical radi-
ation resistance and x is the rms velocity of the piston in
cm/s, it is possible to derive an expression for peak cone
movement,

Xk = L.31 X107 \/ Wam'//fgsrl (81)

or
Xpp = S 1TX105\ W, /oS, (82)

where x,, is in inches (note that this x which stands for
excursion is unrelated to the shape parameter x of Eq.
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Fig. 10. Normalized cone excursion versus normalized fre-
quency for various orders of Butterworth response with loud-
speaker in vented box (solid curves) and in infinite Baffle
(dashed curves). Curves are numbered for order of response.
Normalized excursion i§ |(fi/f)* — (fo/f)'| * |E(jw)|, part of
Eq. (84).

(21) et seq.), S, is in square inches, and W, is in watts.
Again allowance is made for the fact that the loudspeaker
is mounted in a box so that the radiation resistance is
half the value for an infinite baffle. Thus Eqgs. (81) and

(82) will give values for displacements which are /2
times those given in [4, Fig. 6.9]. Thus

X = SATX A0 Cr, W) [ 1= (@ /0) 2] E(jo) | /w28,
(83)

If we write this expression as

Xy = [1.31 X010 (0, W)/ 11281 [{oy/0)? = (), /0)* ]
|E(jw)| (84)

it is apparent that there are two parts, one fixed for a
given speaker and box (note frequency f, in this expres-
sion) and one that varies with frequency. This latter ex-
pression is plotted in Fig. 10 for various Butterworth re-
sponses, in which box, speaker, and cutoff frequencies
are identical. The solid curve 4 gives the excursion of
the classical fourth-order Butterworth alignment no. 5
of Table 1. Solid curve 5 refers to the fifth-order Butter-
worth alignment no. 10, which includes a simple auxiliary
filter. Solid curve 6 refers to the sixth-order Butterworth
alignment which is identical for nos. 15, 20, and 26, since
both frequency response and box resonant frequency are
the same in each. For comparison, the dotted curves give
the excursions for the same speaker in an infinite baffle
(totally enclosed box) with the same power. Dotted curve
2 applies to a speaker with a second-order Butterworth
response (@, = 0.707). Dotted curve 3 applies to a third-

order Butterworth response (Q; = 1, with a simple aux-
iliary filter). Dotted curve 4 applies to a fourth-order
Butterworth response (Q, = 1.307, with a second-order

auxiliary filter). The frequency response is the same as
solid curve 4, but it is obtained by different means. The
curves show the following.

1) The excursion below resonance is reduced greatly
in both vented box and infinite baffle when an auxiliary
highpass filter is used. The first-order auxiliary filter gives
a good improvement especially in view of its simplicity.
The second-order auxiliary filter not only allows a greater
reduction of cone excursion, it also allows the use of
three separate box alignments for the same response and
allows box volume to be traded for amplifier power in
the case of the vented box. The Butterworth curves with
second-order auxiliary filters are symmetrical about the

center frequency. There seems little need therefore to
use more elaborate filtering.

2) Even more important, the excursion of the cone is
reduced greatly when the loudspeaker is placed in a
vented box. The curve predicts zero excursion at the box
frequency. This arises from the assumption that the Q
of the box circuit is infinite. While this cannot be achieved
completely in practice, the excursion at the box frequency
will be low so long as the ratio of Q of the box to QO of
the speaker is high, as demonstrated in Section IIL.

Of course, if resistance is deliberately introduced into
the box circuit, as by making the vent from a number of
small holes or by stretching fabric across the vent, the Q
will be greatly reduced and some of the advantage of
the vented box will be lost, as shown in the next section.
Fig. 10 refers only to Butterworth responses. In Fig. 11,
a plot is made of the function |[(w,/w)?— (w,/w)*| against
frequency. If, for example, in a Chebyshev response the
frequency response is known, the excursion at different
frequencies can be found by reading off the function at
a given frequency on Fig. 11 and multiplying it with the
frequency response. The rapid rise of the function be-
tween normalized frequencies of 1 and 0.71 shows why
responses should be preferred in which f, is not too
much greater than f,. Thus with respect to cone excur-
sion, an alignment in the group 20-25 would be preferred
to its counterpart in the group 15-19 which has a lower
value of f,/f,.

It would seem that in published ratings of loudspeakers,
the maximum excursion x,,,, would be more useful than
the conventicnal rating of maximum input power. The
latter might save the loudspeaker from a meited voice
coil, but when mechanical damage or undistorted acous-
tic output are of interest, x,,,,, along with the kind of
baffle and the alignment, determine the performance.

XI. BOXES WITH RESISTIVE LOADING OF VENT

Good results have been reported with resistively loaded
vents [1]. These were therefore investigated using both
series and parallel loading of the vent as shown in Fig. 12.
In both cases, the resistance was assumed to be constant
with respect to frequency and the response function was
found to be of third order.

This, by the way, explains a discrepancy between the
statements in [3, p. 244] and in [2, p. 11] that the drop
in response below cutoff is 18 dB per octave, even though
[2, Eq. 15)], which is equivalent to Eq. (20) of this
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Fig. 11. Function |(f./f)* — (f+/f)*| versus normalized fre-
quency {/f». The function, part of Eq. (84), is used to com-
pute excursion when frequency response |E(jw)| is known.
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Fig. 12. Equivalent acoustic circuit of loudspeaker and box
showing added acoustic damping in series or parallel with
vent.

paper, obviously has an asymptotic slope of 24 dB per
octave. In the practical case, where resistance loading
of the vent however small will be encountered, the asymp-
totic slope will eventually be 18 dB per octave; but so
long as the original simplifying assumptions hold, the
response in the region that concerns us will be effectively
24 dB per octave.

The expressions are, for the case of series resistance
loading,

E(p) = 1/{1+(1/p) (1/Q0sT,+Q,T,/T2,) + (1/p%)
(1/T82+ l/Tb2+Cas/Cast2) +Qb/p3Ts2Tb} (85)

when

1/Q, = T,/Q,T,+Q,T,/T, (86)
and Q, is defined as the ratio of acoustic mass resistance
to series acoustic resistance of the vent at the box reso-
nant frequency.

For the case of parallel resistance loading,

E(p) = 1/{1+1/p)(QpT,/T2+1/QyTy+CoTo/
CorT?Qp) +(1/P%) (1/T2+1/Ty2+Cop/Cop T2)

+0./P*T°T;)} (87)

when

1/Q¢ = QTy/Ts+T,/Q0T,+Co, T,/ Coy T,Q,, (88)
and @, in this case is the ratio of parallel acoustic resist-
ance across the vent (series resistance being assumed
negligible) to acoustic mass reactance. Note the inversion
of the expression for parallel Q, compared with that for
series Q. Since these equations are of third order and
there is one extra variable Q,, there are two extra de-
grees of freedom in the design. However, one is removed
if an all-pole function is desired, hence Eqs. (86) and
(88). Before an alignment is commenced, one other pa-
rameter must be fixed arbitrarily. The ratio C,,/C,, seems
the easiest to handle for this purpose. Thus in a third-
order Butterworth alignment, if C,,/C,; is made 1.414,
for comparison with the fourth-order Butterworth align-
ment no. 5 of Table I, the results are as given in Table II.

Table II. Parameters for third-order Butterworth alignment
with resistive vented loading.

Method of Loading | f,/f, |

(Alignment No. 5,
for comparison)

f5 /£, . Coe/Cap Q. Qs
Series Resistance | 1.317 | 1.285 | 1414 = 0.379 “ 2.22
Parallel Resistance 1.420 1.120 1.414 } 0.352 i 2.25
No Resistance 1.000 1.000 1.414 ‘ 0.383 i oo
i
i

It will be seen that although the box had the same
volume, the cutoff frequencies for the resistively loaded
alignments are 1.32 and 1.42 times higher than no. 5 of
Table 1. Compared with previous alignments (no. 1-9 of
Table I) those of Table II are most inefficient in utiliza-
tion of box volume, there is no compensating freedom to
use a larger value of @,, in fact it needs to be a little
smaller, finally and more important, the excursion of the
speaker near cutoff frequency is greatly increased. For
these reasons, the use of acoustic damping seems to be
unjustified. It is realized that the cases treated here use
resistances which are constant with frequency. Some
acoustic resistances, as described for example in [3, Eqs.
(5.54) and (5.56)], vary with frequency and might have
a somewhat different effect. However, the use of added
damping with the attendant dissipation of input power
seems to be wrong in principle, unless a suitable alterna-
tive cannot be found. It is believed that the method out-
lined already provides the suitable alternative.

Effect of Losses in Box and Vent

Having established that intentional loading of the vent
is undesirable, it is of interest to know the effect on the
ideal response, obtained by assuming zero loss, of small
unavoidable losses in the box and vent. We will only
consider performance at the box resonant frequency,
since at this frequency 1) the box circuit contributes
most, in the ideal case all, of the acoustic output, and
2) the losses in the box circuit are greatest.

In the ideal case, the transfer impedance connecting
the input force E,BI/S,(R,+R,) with the vent volume
velocity U, in Fig. 2, at the box resonant frequency e,
is jo,M,,. If now we express all the losses in the vent
and the box as @,, the “Q of the box and vent circuit,”
the transfer impedance, and thus the frequency response
at oy, is reduced by a factor which we will call the maxi-
mum box loss (A4,),,.,- Then, to a close approximation,

(Ap)mar = 1/[1+(1/Q1Q,) (Co3/Coy) (wp/05) 1. (89)

If we apply the approximations of parts 1) and 2) of
Section VI for the “unassisted” alignments no. 1-9 of
Table I, Eq. (89) is simplified to

(Ay)mar = 1/[1+(1.85/Q,) (£,2/f32) ] (90)
that is, for a given value of Q,, the box loss increases
with higher values of f;/f; and thus, larger box sizes.

To illustrate the effect of box loss, Eq. (89) is applied
to various alignments. Taking first the classical alignment,
no. 5 of Table I, the maximum box loss is 0.5 dB when
Qp is 30 and 1.5 dB when @, is 10. Taking other, ex-
treme, alignments when Q, is 30, the losses for align-
ments no. 1, 9, 19, and 25 are 0.3 dB, 0.7 dB, 0.5 dB,
and 0.7 dB, respectively. Thus it can be seen that a Q,
of 30 will have little effect on any alignment. With a
Q, of 10, the losses are 0.9 dB, 1.9 dB, 1.5 dB, and 2.2
dB, respectively, i.e., when the box Q is reduced. three
times, the maximum box loss is increased approximately
three times in each case. A method of measuring Q, is
given at the end of Section XIV and illustrated in the
Appendix.
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Table 11I. Change of output impedance R, with type of feed-
back.

Negative Positive

Voltage Feedback ! R, Decreases R, Iucreases

Current Feedback R, Increases R, Decreases

Xil. AMPLIFIER CIRCUITS
Negative Output Impedance

It is essential to the method that the overall Q, of the
loudspeaker plus amplifier be properly controlled within
+10% for =1 dB accuracy of response. As explained in
Section V, if Q, is twice the optimum value, a 6-dB peak
results. Similarly if Q; is too small, there will be a dip in
the response. Thus it is important that the speaker Q,
be known, either from information supplied by the manu-
facturer or by measurement, and that the amplifier output
impedance be then adjusted to give the required overall
value of Q,. It is assumed in the following that the avail-
able speaker Q, is larger than the required Q,. This is
the more usual case, especially with lower priced loud-
speakers. But if it is smaller, a suitable adjustment can
easily be made, for example, by changing the positive
current feedback to negative current feedback.

The subject of amplifier output impedance control
properly requires another paper, which it is hoped will be
presented later. For the present only some general results
will be given.

If feedback is applied to an amplifier, not only does
its gain change, but its effective output impedance R,
changes also; not its optimum load impedance which re-
mains unchanged by feedback but the impedance which is
seen when looking back into the amplifier output ter-
minals. The effect of applying different kinds of feed-
back is shown in Table III.

The terms voltage feedback and current feedback refer
of course to feedback of a voltage which is proportional
to output voltage and output current, respectively. In the
latter case, this is usually achieved by placing a small
resistor in series with the load, and taking the voltage
drop across it for feedback. It will be seen that not only
does negative voltage feedback reduce the output im-
pedance R,, positive current feedback reduces R, also, and
to the greater extent that R, can be made zero or negative.

Negative output impedance is characteristic of oscil-
lators; one therefore tends to be wary of it as tending to
instability. But this can only happen when the positive
output impedance presented by the load is less than the
negative impedance presented by the amplifier. Now the
impedance of a loudspeaker in a box, typified by Fig. 5,
can never be less than its dc resistance R, of Fig. 4. The
only exception is at very high frequencies, where the
shunt capacitance of the connecting leads takes effect.
But unless the leads are very long and the nominal im-
pedance of the speaker is high, this will not usually take
effect within the bandwidth of the amplifier. And in any
case, we will want to eliminate the negative impedance
characteristic at the higher audio frequencies for reasons
that will be discussed later. Thus a negative impedance
amplifier can be made completely stable apart from gross

misadjustment, such as connecting a loudspeaker of much
lower impedance than the design figure or short-circuiting
the output leads.

The method of applying mixed feedback is shown in
Fig. 13. It will be seen that if the sense of the voltage
developed across the potential divider R; and R, is nega-
tive, then the voltage developed across the current feed-
back resistor R,, usually made less than 1/10 the nominal
impedance of the speaker to minimize power loss, will be
positive. The circuit shows why this method is sometimes
described as bridge feedback. Usually the circuit is ar-
ranged to be unbalanced at all frequencies so that the
net feedback is always negative, but it need not neces-
sarily be so. For example, if no net negative feedback is
desired, so that there is no overall gain reduction with
nominal load, the bridge will be balanced at nominal
load.

Physically, the circuit can be thought of as having a
certain amount of feedback with nominal load, in which
the negative voltage feedback is partially neutralized by
the voltage from the positive current feedback resistor.
If the impedance Z, is open-circuited, the current feed-
back from R, disappears leaving a greater amount of
negative feedback. Thus the output voltage may be less
on open circuit than on nominal load. This is the effect
we describe as negative output impedance. Its extent, or
whether it is seenat all, will depend on the original gain
and output impedance of the amplifier and the value of
the feedback resistor R,. Thus if we have, as in Fig. 4, a
loudspeaker resistance R,, and make the effective output
impedance of the amplifier R, equal to, say, —0.6R,, the
total effective impedance of R,+R, becomes -+0.4R,.
And if the Q, of the loudspeaker is 1.0, this will make
the overall O, a value of 0.4 by applying a maximum of
1.0/0.4 times, i.e., 8.0 dB, extra gain reduction by nega-
tive feedback when the impedance of the speaker becomes
high, as at f, and f; of Fig. 5. (Need it be emphasized
that this form of damping does not dissipate amplifier
output power, except in the small current feedback re-
sistor. It reduces power by feedback at the source.)

This fact necessitates a degree of additional care in the
design of negative impedance amplifier. For when the
load is open-circuited, the negative feedback rises to the
maximum; in this case a gain reduction of 8 dB above
the nominal value, and the stability margin will be re-
duced. The size of the negative impedance will in prac-
tice be limited either by this consideration or by the need
for a feedback resistor so large that it dissipates an ap-
preciable part of the output power.

An alternative method of control damping uses a
feedback winding closely coupled to the voice coil. In
this way, feedback can be taken effectively from the
junction of R, and L, in Fig. 4. Simple negative feedback

Rj
FROM “ +
——— —e
AMPLIFIER 4
<R,T <R,
+ +
FEEDBACK JVOLTAGE

TO AMPLIFIER

Fig. 13. Method of applying mixed feedback (positive cur-
rent and negative voltage).
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then reduces an effective output impedance which is the
sum of R,+R,.. Thus Q, is reduced in the same way as
before. Since the impedance of the feedback circuit is
usually high compared with the voice coil impedance,
the feedback winding can be made of very fine wire. In
fact, if it is wound bifilar with the main winding with
wire 16 B&S gauges smaller, it will fit into the air spaces
between the larger wires. It thus takes up no more space
in the air gap and adds less than 3% to the mass of the
copper in the voice coil. Unfortunately, such a winding
is difficult to achieve in production and is thus rarely, if
ever, used.

If negative impedance is applied, it reduces the output
voltage whenever the load impedance is high, i.e., not
only in the region of f, and £, in Fig. 5, but also at fre-
quencies above f, where the impedance rise is due to
the inductance L, of Fig. 4. At high frequencies, this con-
tributes nothing to the acoustic damping of the speaker,
but simply reduces the high-frequency response, in the
case quoted above, a maximum of 8 dB. This is usually
undesirable, so the negative impedance should be elimi-
nated at the higher audio frequencies. One method
among several possible is shown in Fig. 14a. Here an
inductance L, is added to the feedback resistor R, with
a time constant L,/R. matching that of the speaker,
usually in the range of 30-60 us. This can be easily done
by winding a solenoid of copper wire which combines
resistance R. and inductance L.,. However, since this
achieves its result by feeding back an increasing positive
voltage to neutralize an increasing negative voltage, quite
small unbalance between the two can cause instability
at high frequencies.

On the other hand. consider the circuit of Fig. 14b
where the lower resistor of the negative feedback potential
divider R, becomes two resistors R, and R, in series.
Suppose that a suitable set of resistors R,, Ry, and R,
has been found to give the correct gain and output im-
pedance for low frequencies with the dotted connection
open-circuited. It is then possible to find a tapping point
on R, (i.e., the junction of R; and R,,) such that the same
gain is obtained on nominal load whether the dotted
connection is open circuit or short circuit. This is done
by connecting the nominal load and making R, and R,
a potentiometer whose wiper is grounded through a switch.
The wiper is adjusted until the gain is the same with the
switch open or closed. In the open-circuit condition, the
output impedance will be the value originally chosen, but
on short circuit, most of the positive current feedback
will be eliminated. If then a capacitor is substituted for
the switch as shown in Fig. 14b, the output impedance
will change from a negative value at low frequencies to a
small value, either positive or negative depending on the

t LN T
Rz
TR
- Lz
v
(A)
FEEDBACX FEEDBACK

Fig. 14. Methods of eliminating negative output impedance
at high frequencies.

particular circuit. The frequency of changeover, which

should be, say, two octaves above f,, depends on the.

capacitance C and the resistances R; and R;. At the same
time, the gain of the amplifier on nominal load stays
constant over the whole audio range.

Auxiliary Filters

The auxiliary filtering needed for sixth-order alignments
is best provided by circuits using RC networks in a feed-
back loop ahead of the main amplifier. In general it is
unwise to use the main amplifier feedback loop to provide
both negative impedance and high-pass filtering. It is
hoped to deal with this in a later paper, but for the mo-
ment the reader’s attention is directed to the extensive
literature, of which [9] and [10] are examples, concerning
low-frequency filters without inductors, which use resis-
tors, capacitors, and tubes in comparatively inexpensive
combinations.

Maximum Power at Maximum Impedance

The electrical impedance seen at the terminals of a
loudspeaker varies greatly with frequency, but output
stages deliver maximum power into a comparatively
narrow range of impedances. To consider the maximum
acoustic power that can be delivered by an amplifier
through a loudspeaker, we return to the equivalent elec-
trical circuit of Fig. 4, together with the impedance
curve of Fig. 5. For this purpose, we ignore for the
moment the inductance L, with its electrical shunt loss
R, and assume that the curve of Fig. 5 reaches a final
value of R, above f,.

The acoustic output depends on the voltage across R,
which includes the electrical equivalent of the radiation
resistance R,,,. Since R,,, varies with frequency squared,
the voltage across R,, needs to vary inversely with fre-
quency to maintain constant acoustic power. At the higher
frequencies the motional impedance is much lower than
R, and is controlled by the reactance of C,,,., which is
equal to B%?/M,,. Thus the condition for flat response
is achieved, often described as mass control.

If B is varied while R, remains constant, the motional
impedance at any given high frequency within the piston
range will increase with B2. The electrical equivalent
of radiation resistance, though small, will increase and
with it the ratio, again small, of acoustic power radiated
to electrical power input. Thus efficiency varies with BZ.
At the same time the increase of motional impedance
while the resistance R, remains constant causes Q,, the
electrical Q, to decrease inversely with increasing BZ2.

But as the frequency decreases, the motional impedance
rises, reaching at f, and again at f;, a maximum value of
R.; which is usually several times the resistance R,.
Thus at these peaks the motional impedance, which at
high frequencies was negligible compared with R,, is
now the major part of the total impedance. Suppose for
simplicity that it comprises all of the speaker impedance.

This time when B is varied and the motional impedance .

4 This should not be confused with the technique of mass
control practiced by politicians and advertising people. In
that context, the reactance is usually assumed to result from
the equivalent of a compliance, and hence to decrease with
signal frequency.
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varies as BZ, then for a given acoustic power output the
voltage across R,,, which is virtually the input voltage,
will need to increase with increasing B. Summarizing,
for a fixed acoustic power output, an increase of B will
decrease the input voltage required at high frequencies,
and increase the input voltage required at the impedance
peaks. Also Q. will decrease.

With a load impedance much larger than nominal, the
criterion of performance of the amplifier becomes, not
output power, but the undistorted output voltage on open
circuit. This will always be larger than the undistorted
output voltage at nominal load; how much larger will
depend on the design of the amplifier.

Now if the Q; required for a flat frequency response is
identical with the Q. of the loudspeaker, then if we ignore
Q.. the generator impedance R, must be zero. Thus for
a constant acoustic power output the same voltage will be
required at the loudspeaker terminals at all frequencies,
and all impedances, so that at the frequency f, some-
what more maximum acoustic power is available than
at higher frequencies.

If the Q, required is less than Q,, R, will need to be
negative, and for constant acoustic power and amplifier
output voltage, at the junction of R, and R, in Fig. 4,
will fall at f,. But if the Q, required is greater than Q,,
R, will need to be positive, and the amplifier output
voltage for constant acoustic power will rise at f,. If the
ratio of increase of voltage required is greater than the
ratio of amplifier undistorted output voltages on open
circuit to on-load, it is possible for less maximum acoustic
power to be available in the region of f, than at other
frequencies in the useful band. But since low values of
Q. are normally associated with high efficiency. this is
only likely to occur with high-efficiency, usually high-
auality speakers. It should not cause trouble until Q, is
less than half Q,, and even then the maximum acoustic
power in most program material is less at frequencies
below 100 Hz than around 400 Hz.

Thus there is a paradox that a highly efficient speaker
may deliver less power around f, than at higher frequen-
cies, while a less efficient speaker delivers more. This will
depend on the ratio of Q, to Q, and of amplifier undis-
torted output voltage off-load to on-load.

Related to this topic is the flattening of the impedance
characteristic which is usually considered to be a good
feature of vented boxes. Reference to Fig. 5, and com-
parison with Fig. 16, shows that, with the simplifying
assumption that the resistive losses in the box and vent
are negligible, the height of the impedance peak R, + R,
peaks at f, and f, and raise the minimum impedance at f,.
But this is incidental, and the relative heights are of little
importance. Thus the idea of tuning the box so that
the impedance peaks at f, and f, are equal, misses the
real point. In the impedance curve of a loudspeaker in
a box, the most useful information is not the values of
the impedances, so long as box and vent damping is not
too severe, but the values of the frequencies f,, f,, and f,.
Knowledge of these three frequencies alone enables a
box alignment to be checked by Egs. (105) and (106).

It should be clear that flatness of the impedance char-
acteristic is no indication of flatness of acoustic response.
Take as an analogy a coupled pair of tuned circuits. When
the output voltage, or more exactly the transfer imped-
ance, is maximally flat, the input impedance has two

peaks. If one parameter is known, say the ratio of
primary to secondary Q, the transfer impedance can be
deduced from the input impedance, just as we do for
loudspeakers in Eqs. (105) and (106). But a flat input
impedance characteristic does not indicate a flat transfer
impedance. In a loudspeaker, the impedance character-
istic has greater peaks, whose height depends purely on
the acoustic damping, though this contributes little to the
overall system damping, and thus the overall frequency
response.

XIll. EFFECTIVE REVERBERATION TIME

An objection sometimes made to the use of vented
boxes is that the slope of attenuation beyond cutoff,
24 dB per octave, is much steeper than the 12 dB per
octave of a speaker on an infinite baffle, and therefore
the transient response is worse. In a low-pass filter, the
ringing associated with steep attenuation slope is viriually
removed by the use of Thompson or critically damped
responses. But in high-pass filters such as are considered
here, there is always some overshoot with filters of order
two or more. To estimate its effect on a listener we use
the concept of “effective reverberation time.”

Imagine that we have a source of sound in a room
which has built up a steady field. The source is then
stopped. The sound in the rcom does not stop immediately,
but dies away gradually. The time taken for the sound
to decay is called the reverberation time, defined as the
time taken for the sound pressure in the room to fall
60 dB from its original value. In small rooms the rever-
beration time will probably lie between 400 ms for a
highly damped room to 1 s or more for a live one.

When the scund passes through two reverberant rooms
in cascade, the law of the resulting overall reverberation
time is not well establishd, but calculations on cascaded
high-pass filters suggest that rms addition gives at least
a guide. In any case it would appear that an added
reverberation time of 200—-300 ms should not appreciably
color the reproduction.

When a transient is applied to a filter and it rings, the
effect is perceived by the ear, or brain, as an extension
of the transient event in time. Hence the expression
“hang-over.” To express the effect of the ringing then,
an idea is borrowed from architectural acoustics, and the
effective reverberation time of a filter is defined as the
time taken, after a step function is applied, for the am-
plitude of the envelope of ringing to fall 60 dB below the
amplitude of the original step function.

For the higher order filter functions, with two or more
second-order factors, only the most lightly damped factor
need be considered. For, by the time the ringing due to
the most lightly damped factors is 60 dB down, the ring-
ing due to the more heavily damped factors is negligible.
This eases computation greatly.

Actually, at low frequencies the reverberation time de-
fined above will be rather longer than the time the sound
is perceived by the listener. To see why, we consult the
much abused Fletcher—Munson curves {4, Fig. 12.11].

Suppose, for example, that the original sound is at
100-phon level. This is probably the maximum a system
could reproduce, or a listener tolerate. Now at 50 Hz the
threshold of hearing is 51 dB above reference level,
that is, 49 dB below our arbitrary listening level. At
25 Hz the threshold of hearing is 67 dB above reference
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Table IV. Reverberation times for various alignments.

Type of response B, C, C, B, C, B Cy Cq Cyg
Q; (for second order alignments) 0.707 1.000 1.414 - —_ — — — —
k (for sixth order alighments) : e — —_— e — 1.000 0.600 0.414 0.268
Alignment numbers — — — 5 8 15, 20,26 17,22 19, 24 25, 27
Time (in periods of cutoff fre- '
quency) 1.63 2,24 3.7 2.87 7.09 +4.77 6.7 9.67 14.86
Time for 50 c/s cutoff (mS) ‘ 33 45 63 537 142 ‘ 95 136 193 297

level, that is, only 33 dB below our arbitrary listening
level. At 25 Hz, therefore, the effective reverberation
time for the listener cannot be greater than the time in
which the sound level falls 33 dB, i.e., about half the
reverberation time as defined conventionally. Thus at
low frequencies in general, the conventional definition
based on a 60-dB fall in level yields a reverberation time
rather longer than a listener will hear. (This is probably
the reason for the observed increase in optimum rever-
beration time at low frequencies, see [4, Fig. 11.11].)

In a filter which cuts off sharply, the major ringing
{requency will be close to the cutoff frequency. Also for
a given shape of response curve the reverberation time
can be expressed as a certain number of cycles of the cut-
off frequency (see Table IV), i.e., the reverberation time
increases with decreasing cutoff frequency. On the other
hand, below, say, 50 Hz, its effect on the listener will
decrease at approximately the same rate. Thus for all
filters of a given response curve shape, the figure for
50 Hz should give a rough idea of the maximum rever-
beration time, as perceived by the listener.

Calculated reverberation times are given in Table IV.
The first three alignments are of second order, corre-
sponding to a loudspeaker on an infinite baffle. For these,
the values of Q, are shown. Note that the reverberation
time, though low, doubles as Q, increases from 0.707 to
1.414, that is, when the frequency response goes from
maximally flat to a 4-dB peak. The times for 50-Hz cutoff
are all below 200 ms, except for the last (k = 0.268),
which is the very steepest.

It thus appears that a properly adjusted vented box,
even with amplifier assistance (auxiliary filtering), need
cause no perceptible coloration due to ringing. But it
is important to emphasize that the adjustment must be
correct. Table IV shows that the addition of a 4-dB
peak to the response of a speaker on an infinite baffle
can double the reverberation time. Being low in the
first place it remains tolerable. But in the case of a
vented box, particularly with an auxiliary filter, a doubled
reverberation time would be more serious. Again, this
emphasizes the importance of adequate damping (for
correct value of Q,) by the amplifier.

Fig. 15. Simplified equivalent electrical circuit of loudspeaker.

XIV. MEASUREMENT OF LOUDSPEAKER
PARAMETERS

In earlier sections it was shown how the required re-
sponse can be obtained from a loudspeaker and box if
several parameters are known. The question remains, how
are these parameters found?

Properly, this information should be available from
the loudspeaker manufacturer. This is particularly im-
portant for equipment produced in quantity, where it is
important to know not only the mean values but also the
tolerances. However, in the absence of published figures,
or to check them, the following procedure will provide
the information.

Procedures for measuring Q are given in [2, p. 13], but
the method used seems too laborious and inaccurate.
The method outlined hereafter can be understood by con-
sidering Figs. 15 and 16. Figure 15 is derived from Fig. 4;
only this time we omit the vented box and we ignore
L, and R, which take effect at much higher frequencies.
Now

Qu = 0,CheR g 91)
0, = 0,CphpeRe- (92)

These quantities, defined earlier in Eqs. (71) and (72)
in terms of the acoustic equivalent circuit, are defined
here in terms of the electrical equivalent circuit. We
define r, as the ratio of the impedance at resonance,
R.; + R,, to the dc resistance of the voice coil R,. Now
we take another arbitrary impedance which is presented
at two other frequencies f, and f, on the flanks of the
curve, and we call its ratio to the dc resistance ry. Then

fife = 12 (93)

Physically, this means that the curve is symmetrical
on a logarithmic frequency scale. In experimental work
it provides a handy check. Now we can find

Q.= [fs/(fz_f1)]["02_’12)/("12_1)]% (94)
and
Qe=Qa/(r0_l)' (95)
If additionally we choose r; such that
rn=\r (96)
then Eq. (94) is simplified to
Q. = V1o fo/ (fa—11). o7

The interesting feature of these expressions is that they
involve no approximations, and thus hold for all values of
Q. Furthermore around the value /7, the curve has
its greatest slope. Thus the frequencies f; and f, can be
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Fig. 16. Typical impedance curve of loudspeaker, modulus
of Z, in Fig. 15.

found most accurately. This is especially important since
the calculation involves a comparatively small difference
between large numbers f,—f,.

Usually Q, takes account of the acoustic resistances
in the loudspeaker. But if the voice coil has a short-
circuited turn by accident or design, e.g., an aluminum
former, this will appear in Q,, even though its physical
nature is similar to Q.. (But eddy current losses in the
pole piece or front plate appear in R,;.)

Fig. 17 shows the test circuit. V is a voltmeter of
impedance much higher than the loudspeaker. Through-
out the readings, the generator is adjusted so that the
reading of V is constant. The value is not of great
importance, but a standard test figure is one volt. The
accuracy of this voltmeter is not important so long as it
is independent of frequency. 4 is an ac ammeter which
reads the current into the speaker with the fixed voltage
across its terminals. Again, since we are interested only
in the shape of the impedance curve, the absolute accu-
racy of this instrument is not important so long as the
meter reading is linear. However, to set the relative cur-
rent due to R,, first we measure R, with dc on a Wheat-
stone bridge, and then a calibrating resistor R, of similar
value. Connecting R, to the test terminals and applying
the standard test voltage at say, f, a current value I, is
found on the ammeter 4. Then the current I, which
corresponds to R, is found by

1, = I.R./R,.

Now the loudspeaker is suspended in air as far from
reflecting surfaces as is practical and connected to the
test terminals instead of R, The generator is adjusted
to the speaker resonant frequency f,, indicated by mini-
mum current I,. Thus r, is found:

ro = 1/l

(98)

(99)

Now the current \/(II,) is found corresponding to
the ratio \/7, and the frequencies either side of resonance,
where this current value is read. These are f1 and f,
and they should be read to as close an accuracy as the
test gear will allow. Eq. (93) provides a check on the

GENERATOR

Fig. 17. Test circuit schematic for measurement of loud-
speaker parameters.

method, and Egs. (97) and (95) give Q, and Q..

The next problem is to find the value of V,,, the volume
of air equivalent to the loudspeaker compliance. For
this, the loudspeaker is placed in a totally enclosed un-
lined box whose internal volume ¥V, is known, remember-
ing that allowance must be made for bracing and the vol-
ume displaced by the speaker. It is important that this box
be free of air leaks. If these occur we will read part of
the curve of Fig. 5, around f,. Thus care should be taken,
not only in the construction of the box and in the mount-
ing of the speaker, but also in the way the speaker leads
are taken through the walls of the box. Solid terminals
are preferred.

Another precaution may be necessary. In Figs. 15
and 16, from which we derived Egs. (93), (94), (95),
and (97), we assumed that the effect of the inductance
L, is negligible. In fact, L, interacts with the parallel
combination of L, and C,,, to produce a series reso-
nance at f, in Fig. 5, where the nominal impedance is
measured. If this frequency, usually 400600 Hz, is well
above the speaker resonance f,, so that there is little dis-
turbance of the curve at f, of Fig. 16, the accuracy of the
measurements will be unaffected. But if f, is above 150
Hz, which can occur with small speakers and becomes
even more likely when the speaker is placed in the box
for the last test, the likelihood of inaccurate results
increases.

Fig. 18. Modification of Fig. 17 to cancel effect of loud-
speaker inductance L..

This could be avoided by connecting in the circuit of
Fig. 18 a bifilar inductance whose value L, in each half
is equal to the inductance of the voice coil. It is prefer-
able, and not difficult, to wind this with an air core. In
measuring L, of the loudspeaker, it is important to
measure it at a frequency well away from f,, say, 10 kHz.
Also it is important to measure it as an inductance in
parallel with a resistance (D or tan 8 scale, nor the Q
scale of a bridge), for the Q of the inductance at 10
kHz is usually of the order of one which can lead to
serious error if the measurement is made as an inductance
in series with a resistance. With a high-impedance volt-
meter V, error due to series resistance of the inductor
should be negligible.

If the new resonant frequency in the closed box f,, is
found, the ratio of volume is usually given as

Vas/Vb = (fsc/fsa)z—l

where f,, is the resonant frequency of the speaker in air
which we previously called f,. However, this expression
ignores the change in the acoustic mass M,, of 1.05 to
1.25 times which results from placing the speaker in the
box. A more accurate method is to repeat the previous
procedures for finding Q,. Then if we call Q,, and Q,,
the values of Q, measured in air and in the closed box,
respectively, then

VGS/VD = [(fchec)/(fsaQea)] —1.

(100)

(101)
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Also the ratio of the acoustic masses in air and in the
closed box

M(mlt/M(mb = fs(‘Q(‘a/fsaQec

should lie between 0.8 and 0.95.

With V¥, known, V,, can be calculated. The size of
V), is not critical, but should not be too large, otherwise
the ratio f,,./f., becomes close to unity, and the accuracy
of the V, /V, calculation falls. This can be seen from
Eq. (100). Finally the values of f« and Q,, are adjusted
to take account of the change in M,, when the speaker
1s placed in the box. Thus

f.wh = fm(Ma,\-n/Mash)% (103)
Qr'b = Q.m,/(Ma.w/Maxb)l/z- (104)

Thus the efficiency 7, can be calculated from Eq. (77).
This gives the result, rather surprising at first sight, that
the electroacoustic conversion efficiency of a loudspeaker
in the piston range can be calculated from electrical
measurements alone.

The following alternative method is useful, particularly
when the loudspeaker has to be placed in a box whose
size is already determined or as a final check on a pre-
viously calculated box, or again if it becomes too difficult
to seal the loudspeaker in the test box.’

First the vent, if adjustable, is made to resonate with
the box somewhere near the speaker resonant frequency,
but this is not very important. Then the three frequencies
fs v, and f, of Fig. S are found as accurately as possible.
Special care is needed in reading f, as the curve has a
flat bottom.

From these readings we find f,,, the resonant frequency
of the speaker when mounted in the box,

(102)

for = fafi/fo (105)
and the compliance ratio C,,/C,,, ie.,
Vas/Vy = (F2=1HD (2 =12 /H* 2. (106)

With the speaker resonant frequency in air f,, already
known and f,, known from Eq. (105), we find the mass
ratio M,,/M,,,, from Eq. (103), and then Q,, from Eq.
(104). Q, is adjusted to Q,, in a similar manner. By
reference to Table I and Fig. 7, a suitable alignment
can be found, thus setting the final values of f, and Q..
Note that Q, is due to the parallel combination of 1) Q.
and 2) Q,, modified by the amplifier.

To estimate the value of Q,, the “Q of the box and
vent circuit,” we measure I,, the current through the
speaker at f,, with the input voltage held constant as
before. Then

Qb = (“’b/ws) (Cab/cas) [( l/Q(’) +

/) Uy—1,) /(I.~1)]. (107)

5 Experience gained since the writing of this paper shows
that accurate results are more easily obtained with this second
method. Using a vented box is especially preferred if the
speaker being measured has a low resonant frequency and if
the testing box is fairly small. In such cases, small leaks in
the “totally enclosed” box or around the loudspeaker pad
ring can produce a virtual vent which produces the familiar
twin peaks of loudspeaker impedance. But if the lower peak
is below the limit of measurement, say, below 10 or 15 Hz,
it could easily happen that the remaining upper peak would
be taken as the single peak of a closed-box system with dire
results.

Note that. because the difference between I, and I, will
be small, the readings must be taken carefully.
Comparing Eq. (107) with Eq. (89), it can be seen
that
(Ab)nmvr = l/{l + [Qan/Qt(Qn+
Qe) ] [(I('—Ib),/(lh_lo) ] }

This greatly simplifies the estimation of (A,),,,.
A worked example of this method is given in the
Appendix.®

(108)

XV. EXPERIMENTAL WORK

When the work was started from which this paper
derived, it was necessary first to find the parameters for a
number of loudspeakers. To date about fifty have been
measured. In the case of one speaker, the effect of a
number of modifications was observed; in the rest, usually
one and occasionally two or three samples have been
checked. The results obtained give confidence in the
method. For example, from the readings and knowing
other parameters, it is possible to calculate the flux
density, and the values obtained give good correlation
with readings on a flux meter. Changes of parameters
during production can also be detected.

Some generalizations from the results have been men-
tioned earlier. For example, it was found that Q, varies
between about 3 and 10, which is high compared with
the @, values of 0.2 to 0.6 required in Table I. Thus it
was apparent that acoustic resistance usually has little
effect on the damping of a speaker in a well-designed
system. Values of Q, varied from 0.2 to 0.5 in the case
of high-quality speakers, through 0.5 to 1.0 in the better
commercial grades of speakers, to 2 and even 3 in the
case of some low-priced speakers.

Similarly efficiencies, for radiation from one side of an
infinite baffle, ranged from —24 dB (0.4%) for low-
priced speakers through —20 dB (1% ) for medium-grade
to —14 dB (4% ) for high-quality speakers.

However, one must resist the tempting generalization
that it is possible to rate the overall quality of a speaker
by its Q. or even its efficiency. For example, if efficiency
is made higher and Q, lower by reducing the cone mass
M,,, trouble with “break up” may result at middle
frequencies. In fact while the best 8-in speaker tested
had a Q, of 0.33, there was one sample with good clean
response at high frequencies with a high Q, of 1.7 and
another with Q. below 1 which was less acceptable. It
must be remembered that these readings, and the paper
in general, are concerned only with low-frequency per-
formance.

As a result of the design theory, a number of boxes
have been made. In the absence of reliable measurements
of sound pressure, all that can be said is that they gave a
good improvement in clean low-frequency response, and
that the cutoff frequencies are near the predicted values.
Some particularly gratifying results have been obtained

& Experimental work, using the above method indicates that
in practical boxes Q. is often of the order of 10. This differ-
ence from the calculated values of 30 or more may be due
to frictional losses in the timber. It is shown in Section XI
that when Q, is 10, the frequency response error is still only
1 to 2 dB. However, if there are sufficient air leaks, or if the
cavity damping is excessive, as when the box is completely
stuffed with underfelt, O, can fall below 5.
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with 5-in speakers in modest boxes with response down
to 80 Hz.

XVI. CONCLUSION

The work described herein was begun as an advanced
development project in an attempt to obtain good low-
frequency response from loudspeakers in small boxes.
Unfortunately, no “revolutionary concept™ was uncovered
that offers something for nothing. On the other hand, it
has provided a reasonably precise method of design that
was previously lacking.

In general, a system with good flat response down to
a predictable cutoff frequency can be designed, if the
necessary parameters Q,. (and Q,), V,.. and f, are known
for the loudspeaker. The box volume is closely propor-
tional to the inverse square of cutoff frequency, which
can be varied over a wide range. The output impedance
R, of the amplifier has a large effect in controlling the
response, especially at f,, the higher frequency of maxi-
mum impedance. Whether R, needs to be positive, zero,
or negative depends on the type of alignment and the Q
parameters of the speaker. On the evidence available,
acoustic resistance damping of the vent has no advantage,
and is wasteful of box volume or bandwidth.

The advantages accruing from a predictable design
include the possibility of optimum design of “rumble”
filters. At frequencies below cutoff where negligible
acoustic output is produced, these relieve the amplifier
and loudspeaker of high signal amplitudes and thus
minimize an anncying source of intermodulation dis-
tortion. Carried a step further, the use of auxiliary elec-
trical filters makes it possible to trade box volume for
low-frequency power capability of the amplifier.

Another way of reducing box volume is to increase the
mass of the loudspeaker cone. But since this also reduces
efficiency, it may be considered as a further example of
trading amplifier size for box size, only this time the
amplifier must deliver increased power over the whole
audio spectrum. Again, the box volume may be reduced
if a smaller diameter loudspeaker is used. The danger
here is that the speaker excursion increases, but it is a
good solution if the speaker is capable of a long linear
excursion, or if the power output and/or low-frequency
response is restricted.

The size of the magnet, or more precisely the flux
density B, has a great influence on performance. Both
efficiency, hence acoustic output, and Q. vary with BZ;
so it is clear that the saving of pennies on a smaller
magnet can be poor economy.

The parameters needed for vented-box design can be
measured with normal electrical measuring equipment
together with a test box of known net internal volume.
Nevertheless it is suggested to loudspeaker manufacturers
that it is in their interest, as well as the user’s, to publish
typical values of Q.. @,, V,. and x,,,. as well as f..
These parameters are more useful to the system designer
than, for example, flux density or total flux. Their publi-
cation would help ensure that the manufacturer’s product
is used to the best possible advantage.

The totally enclosed box has been mentioned only in
passing, since it is well covered in [2]. But it should be
noted that if a totally enclosed box is chosen with the same
volume as that of alignment no. 5, the cutoff frequency
is 1.55 times higher. With smaller boxes. the advantage

decreases, though with practical sizes it is still appreciable.
With larger totally enclosed boxes, the cutoff frequency
can never fall below f, while the Chebyshev vented box
alignments can extend the response considerably below f,.

The greatest advantage of a vented box over an infinite
baffle is the reduction of loudspeaker excursion, permitting
higher power output or lower distortion. To this ad-
vantage, the present paper adds, it is hoped, a greater
flexibility in design. The only apparent disadvantage
of a vented box is in the transient response, but in fact
the ringing is only perceptible with a misadjusted align-
ment. With proper adjustment, the effective reverbera-
ticn time, though longer than that of a properly adjusted
infinite baffle, is not long enough to appreciably color
the sound in the listening room.

Finally, it is emphasized again that the acoustic re-
sponse is due to the combination of speaker plus box plus
amplifier as an integrated whole.

APPENDIX: WORKED EXAMPLE

This refers to a purely imaginary speaker, the readings
being chosen to simplify the calculations. However, the
readings would be typical of a medium-quality 8-in
speaker.

Measurement of Speaker Parameters
Q(I) QC; Vllﬂ; and f.s’

With a Wheatstone bridge we find

dc resistance of speaker R, = 4.00 chms
dc resistance of calibrating resistor R, = 5.00 ohms.

Now we place R, in the test circuit of Fig. 17 and find
that when V reads 1 volt,

I.= 180 mA.

Now
I.R. = 0.180X5.00 = 0.900.

Since this is 10% below the observed reading of 1 volt,
one or both of the meters is inaccurate, but this is un-
impertant so long as their readings are constant with
frequency and the reading of ammeter A4 is linear.

Then from Eq. (98),

1,= IR,

e ¢

/R, = (0.180X5.00) /4.00 = 225 mA.

We now suspend the loudspeaker in air as far from
reflecting surfaces as possible and read the minimum
current I, which is 25 mA at 55.0 Hz (f.,. the speaker
resonant frequengy in air).

Then from Eq. (99),

ro=1./1,=225/25 =9

V= v9=3

V) = V(225X 25) = 75 mA.

With the voltmeter V reading a constant 1 volt, the
ammeter A reads 75 mA at 44.0 and 68.75 Hz.

First we use this reading to check f,, = \/ (44.0 X 68.75)
from Eq. (93) = 55.0 Hz as before. Then from Eq. (97),

Q. = f\/1./ (fa—F) = (55X3)/(68.75—44) = 6.67
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and from Eq. (95),
Q.= Q,/(r,—1) = 6.67/(9—1) = 0.833.

The speaker is now placed in a vented box whose net
volume is 1000 in® and we read the frequencies defined
in Fig. 5,

fr» = 100 Hz; f, = 60 Hz;
Then from Eq. (105),
fso = fifi/f, = (100X 30) /60 = 50 Hz
and from Eq. (106),
Vas/Vy = (2= 12 (Hh2—12) /1212

Computation is easier if we rewrite Eq. (106) as

Vae/Vo = (fut 1) h—F) (Fy+ 1) (F,— 1) /1,22

fl = 30 Hz.

ie.,
Vas/Vy = (100+60)(100—60)(60+30)(60——30)/
1002 X 302
= (160><40><90><30)/(100X30><100><30)
=1.92
ie.,

Ve = 1.92X 1000 = 1920 in3,

In the vented box, the speaker resonant frequency has
dropped fy,/ fou = 50/55 = 0.909 times. Thus from Eq.
(103),

Masa/Musb = (0909)2 = 0.826

and from Eq. (104),
Qup = 6.67,/0.909 = 7.33
while

0., = 0.833/0.909 = 0.917.

At f, the current I, was read as 220 mA. Then from
Eq. (107), the Q of the box plus vent

Qb = (fb/fs) (Cab/cas) [(Qa+Qe)/QaQe]
(Upy—=1) /(= 1) ]
= [60X(7.333-+0.917) X (220—25) 1/
[50X1.92X7.33X0.917X (225—220)]

= (60X 8.25X195) /(50X 1.92X7.33X0.917X 5)
= 29.9.

From Eq. (108) the maximum box loss in the quasi-
Butterworth alignment described below, where Q, =
0.347, is

Ay maz = 1/{1+[Q.0./0(Q,+Q.)]

[(Ie_lb)/(lb_lo)]}
=1/{1 +(7.33><0.917><5)/

(0.347X8.25X195)}
= 1/1.060

which is equivalent to 0.5 dB.
Efficiency » from Eq. (77)

Moy = 8.0X10-12£ 3V, /Q,
= (8.0X 508X 1920) /(1012X 0.917)
= 2.09X 103

which is equivalent to —26.6 dB in a box, or —23.6 dB
on an infinite baffle (i.e., a true infinite baffle, not a totally
enclosed medium-sized box which gives the same efficiency
as a vented box), or —20.6 dB on a true infinite baffle,
taking into account radiation from both front and back.

Thus if the speaker is mounted in a box and fed
a S-watt amplifier, the acoustic power output will

Wao = ngyWe = 5X2.09X10—2 = 0.0104 Wa

If we assume a listening room of 16 X 12%5 X 10 =
2000 ft3, then from [4, p. 418, Fig. 11.12] an acoustic
power of 0.003 watt provides +80-dB intensity level.
Our output is 10.4/3 times, i.e., 5.4 dB greater than this;
therefore the system is capable of a peak +85-dB inten-
sity level.

Peak Excursion x,,

We assume an alignment where the box is tuned to the
same frequency as the loudspeaker, i.c., 50 Hz. This is
typical of Butterworth alignments. Then the fixed part of
the expression for x,; in Eq. (84) is

(1.31 X 105X \/Woy) /£,2S,.
Now if the effective piston diameter is 7 in, i.e.,
S; = wX3.52 = 38.5 in2
then the expression becomes
1.31 X105X 1/0.104/(502X38.5) = 0.139 in.

Now the maximum value of the frequency-sensitive
expression for a vented box in the useful band (above f,)
in Fig. 10 is approximately one quarter. Thus

Xpr = 0.139/4 = %0.035 in

compared with =:0.098 in in a totally enclosed box (in-
finite baffle).

Box Design

First suppose we wish to obtain the best results with
the original 1000-in® box. Allowing 10% for the bracing
and volume displaced by the speaker, the optimum inside
dimensions would be ~¥1100X (0.8, 1.0, 1.25) in, i.e.,
8.28X10.33X12.9 in, say 84 X 10%4 X 13 in. This would
need to be checked in case the original assumption of
10% was incorrect. Assuming that the dimensions are

Table V. Computation of three Butterworth alignments for
imaginary speaker.

Type of alignment QB, B, : B Bg(i)
Cax[Casp 192 1414 1.000 232
V, (cubic inches) . 1000 ;1358 ‘ 1920 704

Height (in.) = 13 S P} 16 11%
Box J,Width (in) . 10f g 13 1 9

Depth “d” (in)| 8f | 9 10 0
Cutoff frequency f, | i |

(c/8) l 58.5 : 50 50 50
Box frequency f, (c [s) )’ 54.7 E 50 50 } 50
L./S, (in."1) . Ls6 1 137 0.97 | 265
S, (in.?) : 7.69 ‘ 10.07 16.25 : 4.50
Vent height “1” (in.) . % » i |1} ‘ bY
Q. | 347 | .383 447 | .299
(Q D totar | .364 E .404 476 .312

| 600 | —.560 | —.481 | —.660

R, IR, |




then in a box similar to Fig. 9, the width of
will be 10% in. The length of the tunnel will be
4 in, together with two thicknesses of timber (say
Pt each) plus a V2-in square stiffener on the top rear
cdge of the shelf, giving a total tunnel length of 934 in.

The simplest alignment for C,,/C,, = 1.92 is a third-
order quasi-Butterworth between alignments no. 4 and 5.
From Fig. 7 (b),

fa/fs = 1.17, thus f;, = 50X 1.17 = 58.5 Hz
f3/f, = 1.07, thus f, = 58.5/1.07 = 54.7 Hz.
Thus

w2 = 1.18X 105
and for the tunnel, from Eq. (61),

(L:/'Sy) requirea = 1.84X108/w,2V,
= 1.84X108/1.18 X 105X 103
= 1.56in—1.

Now if the tunnel height / = 34 in, then area

S, = 10%4 X 3% = 7.69 in2

and
(L‘IJ/SU)(‘nd = 0958/\/3;
= 0.958//7.69
= 0.34 in—1
(Lr/'/sn)[nnn,»] = 975//769
= 1.27 in—1.
Thus

(LU/SU)al'ailubl(: = 1.61in—!

which is about as close as can be obtained with the toler-
ances on the small dimension (34 in) of L

Amplifier Output Impedance R,
Now by interpolation,

0, = 0.347
and since Q,;, = 7.33, Q,, = 0.917, and from Eq. (70),
1/0: = 1/Q,+1/Q,(1+R,/R,).

Thus
1/0.347 = 1/7.33+1/0.917(1+R,/R,).
Hence
R,/R, = —0.60.
Notes

1) (Ly/Sy)eng is small compared with (Ly/S) tunnets

and since the vent area is already small compared with
the piston area, a simple hole in the front panel would
be quite impractical as a vent. Its area would need to be
about 1 in2.

2) The dimension ! (34 in) is fairly critical.

3) @, has little effect on Q,. The negative impedance
required is fairly high but quite practical.

For comparison three Butterworth alignments have also
been computed for this imaginary speaker so that the
effect of amplifier filtering can be assessed (Table V). All
three have cutoff frequencies of 50 Hz. But while B, has
no filtering, Bs has a simple CR filter which is —3 dB at
50 Hz (CR = 3180 ps), and B; has a peak 6 dB high at
53.5 Hz before it falls off at the rate of 12 dB per octave
(y = —1.732, foue = 50 Hz).
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